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Chapter 2

Pontryagin’s Principle

You want proof?

You can’t handle the proof!

In this chapter, we investigate and illustrate the optimality conditions for

the standard optimal control problem developed in Chapter 1. The main result

is called Pontryagin’s Principle. It is also referred to as the Minimum Princi-

ple, the Maximum Principle,∗ Pontryagin’s Minimum Principle or Pontryagin’s

Maximum Principle.

2.1 The Standard Problem

See Fig. 2.1. As discussed in §1.4, page 42, a standard optimal control problem

can be defined in terms of finding a dynamically feasible state-control function

pair, {x(·),u(·)}, that transfers the state of system, x ∈ R
Nx , from a given initial

condition, x(t0) = x0, to a target condition, e
(
xf , tf

)
= 0, while minimizing

a given cost functional, J . Following Chapter 1, this standard problem can be

organized in a structured format† as

∗See §2.5.5 for further discussions on minimum versus maximum.
†This format is nearly identical to the actual structure of a DIDO code.
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86 Chapter 2. Pontryagin’s Principle

(x
0
, t

0)

e(x f,
 t f)

 =
 0

R
Nx+1

Figure 2.1: Schematic for the standard problem; same as Fig. 1.27, repeated
here for quick reference.

x ∈ X = R
Nx u ∈ U ⊆ R

Nu

}
(preamble)

problem︷︸︸︷
(B)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J [x(·),u(·), tf ] = E(x(tf ), tf )

+

∫ tf

t0

F (x(t),u(t), t) dt

⎫⎪⎬⎪⎭ (cost)

Subject to ẋ(t) = f(x(t),u(t), t)
}
(dynamics)

x(t0) = x0

t0 = t0

e
(
xf , tf

)
= 0

⎫⎪⎪⎬⎪⎪⎭ (endpoints)

In addition to U,x0 and t0, the four functions,

E : (xf , tf ) �→ R (endpoint cost)

e : (xf , tf ) �→ R
Ne (endpoint constraint)

F : (x,u, t) �→ R (running cost)

f : (x,u, t) �→ R
Nx (dynamics)

are called the problem data . The data functions are assumed to be continu-

ously differentiable with respect to the state variable.
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2.2 Introduction to Covectors 89

2.2 Introduction to Covectors

By definition, the state vector x is just a medley of Nx variables stacked on top

of one another:

x :=

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...

xNx

⎤⎥⎥⎥⎥⎥⎦
x1-units

x2-units
...

xNx
-units

(2.1)

We have purposefully written Eq. (2.1) with its units alongside to emphasize the

point that x typically comprises a collection of “heterogeneous” scalars. Thus,

our intuitive notion of vector as a quantity with magnitude and direction must

be seriously revised.

Illustrating the Concept in R
3

In (Brac:1), the state vector is defined by

x :=

⎡⎢⎢⎣
x

y

v

⎤⎥⎥⎦
position-units

position-units

velocity-units

(2.2)

If the “magnitude” of x is computed by the standard Euclidean norm

‖x‖2 =
√

x2 + y2 + v2

the result would be physically meaningless. In addition, we cannot legiti-

mately add the square of position units to the square of velocity units.

If a vector is defined näıvely as a quantity with magnitude and direction,

what, then, is the magnitude of this vector? What is its direction? What

happens to the magnitude and direction if we change units?

These simple observations indicate that we need a potentially new approach

to define a meaningful and natural way to measure vectors.

To motivate a new set of ideas, consider the following everyday example:

Suppose we describe a sandwich that comprises the variables x1, x2, x3 . . . where

x1 is bread, x2 is mayonnaise, x3 is lettuce, x4 is meat, and so on. Then it is

clear that we can describe the state of the sandwich in terms of a vector x,

of Nx ingredients, in much the same way as Eq. (2.1). Each component of
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2.2 Introduction to Covectors 91

operation

ω(x) := λb × b+ λm ×m (2.3)

= 80× 2 + 55× 5

= 435 calories

The linear measure of a vector is not unique in the following sense: Instead

of the calorie count, suppose we decided to measure the size of the sandwich

in terms of its weight, a process adopted in many cafeterias. Then suppose we

have λ̃b = 1 ounce per slice and λ̃m = 1 ounce per ounce; this generates a new

linear measure of x that uses the same linear operation as before, but with new

coefficients:

ω(x) = λ̃b × b+ λ̃m ×m

= 1× 2 + 1× 5

= 7 ounces

Yet another way to measure the size of the sandwich is its dollar cost. Suppose

λ̂b = 20 cents per slice and λ̂m = 30 cents per ounce; then, the new linear

measure of x is given by

ω(x) = λ̂b × b+ λ̂m ×m

= 20× 2 + 30× 5

= 190 cents (= $1.90)

Thus, there are many ways to construct a linear measure of x.

Study Problem 2.1

1. Construct at least two additional linear measures for a sand-

wich. What are the numerical values of λb and λm for these

new linear measures?

2. Pick any two items from your grocery bag that have an FDA la-

bel pasted on them. Identify at least two linear measures adopted

by the FDA to inform a consumer.
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92 Chapter 2. Pontryagin’s Principle

We formalize our sandwich example and declare that we will measure vectors

in R
Nx by a linear scalar function, ω, defined by

ω(x) := λ1x1 + λ2x2 + · · ·+ λNx
xNx

(2.4)

The collection of Nx quantities, λ1, λ2, . . . λNx
, that we choose to measure a

vector can be stacked up in a manner similar to x

λ :=

⎡⎢⎢⎢⎢⎢⎣
λ1

λ2

...

λNx

⎤⎥⎥⎥⎥⎥⎦
CU/x1-units

CU/x2-units
...

CU/xNx
-units

(2.5)

to produce a new vector, λ. This vector is called a covector . Obviously,

λ ∈ R
Nx ; however, as evident from its units, its home-space is not X; hence:

λ ∈ R
Nx but λ �∈ X

That is, even though λ has the same dimension as x, it does not occupy the

same space as x. Hence, x + λ is not a legal operation. Obviously, x1 + x2 is

a legal operation and so is λ1 + λ2. Thus, we have created a new vector space,

out of thin air (!), that is different from X. This space is called a dual space;

it is the home space of λ. The dual space is said to be dual to the original or

primal space, X. See Fig. 2.5.

Tech Talk: Strictly speaking, it is the linear scalar function ω, given by

Eq. (2.4), that is called a covector. In fact, a dual vector space, or covector

space, is the space of all linear scalar functions, ω : X → R where X can be

any vector space. In our case, because X is finite-dimensional, the difference

between ω and λ seems nuanced. The vector λ is called a representation of

the linear function ω. Following the age-old practice of convenient abuse of

terminology, we call λ a covector. It is fair warning to say that we have taken

much more liberty than terminology in introducing the concept of a covector.

A mathematician will undoubtedly cringe at this presentation in much the

same way as science fictionados react to the phrase “Vulcan mind trick.”
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94 Chapter 2. Pontryagin’s Principle

components of the state variables. Thus, the costate for Brac:1 is given by

λ :=

⎡⎢⎢⎣
λx

λy

λv

⎤⎥⎥⎦
TU/x-units

TU/y-units

TU/v-units

(2.6)

where we have used the fact that the cost unit in Brac:1 is the same as the

time unit, TU.

A quick examination of the data in Problem B reveals that

f (x,u, t) ∈ R
Nx

which can be elaborated to

f (x,u, t) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(x,u, t)

f2(x,u, t)

...

fNx
(x,u, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

x1-units/t-units

x2-units/t-units

...

xNx
-units/t-units

∈ R
Nx

Illustrating the Concept: Constructing the Vector, f(x,u, t)

In Brac:1, if we choose

x1 =

⎡⎢⎢⎣
−1

0

1

⎤⎥⎥⎦
m

m

m/s

and u1 = π/8

we get (by taking g = 9.8m/s2)

f(x1,u1) =

⎡⎢⎢⎣
0.3827

0.9239

9.0540

⎤⎥⎥⎦
m/s

m/s

m/s2
∈ R

3

This vector is plotted in Fig. 2.6.

Clearly, the dimension of f (x,u, t) is always exactly equal to the dimension
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96 Chapter 2. Pontryagin’s Principle

Computational Tip: In a computational environment, a majority of software

(including DIDO) compute quantities like (x · x), (u · u), etc. with ruthless and

total disregard for units. This computational policy is used near universally in

many software products as a unified means to measure distances, lengths and so

on. Hence, it is imperative that the designer of a specific computational problem

choose judicious units that do not mask the relative importance of one compo-

nent (or variable) against another. In Fig. 2.6, the numerical value of f3(x1,u1)

dominates over the values of f1(x1,u1) and f2(x1,u1) but this is not the case in

Fig. 1.6. Refer back to §1.1.4, page 20, for further discussions on scaling. DIDO

also uses a myriad of covectors for computing various other quantities as discussed

in much of this chapter; hence, the scaling procedures discussed in §1.1.4 must be

balanced with this perspective. Additional concepts and details on scaling and

balancing are discussed in [81] and [84].

The unit of measurement for the running cost, F , is CU/TU; hence, we

can legally add F (x,u, t) to the scalar, λ · f (x,u, t). The sum of these two

quantities,

H(λ,x,u, t) := F (x,u, t) + λT f(x,u, t) (2.7)

in CU/TU units is called the Hamiltonian for Problem B .

Illustrating the Concept: Constructing the Hamiltonian

There is no running cost in Brac:1; hence the Hamiltonian is given by

“dotting” λ to f(x,u, t) where λ is given by Eq. (2.6). Performing this

simple operation, we have

H(λ,x,u) := λxv sin θ + λyv cos θ + λvg cos θ (2.8)

The Hamiltonian here is not an explicit function of time; hence, it is

written as H(λ,x,u) and not as H(λ,x,u, t). Note that the unit of this

particular Hamiltonian is given by TU/TU ; hence, H is dimensionless.
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2.3 The Covectors in Optimal Control 97

Tech Talk: The Hamiltonian is also known by other names in the literature: the

Pontryagin-Hamiltonian, the Pontryagin H-function, the “unminimized Hamil-

tonian,” the pseudo-Hamiltonian (older literature) or the control Hamiltonian.

Later, when it is necessary to use other Hamiltonians, we will use other adjectives

to clarify the appropriate reference. In this book, the adjective-free Hamiltonian

will always be the control Hamiltonian given by Eq. (2.7).

The costate λ is in R
Nx ; hence, in principle, we can use it to measure any

appropriate vector in R
Nx . In the construction of the Hamiltonian, we used

it to measure the vector f(x,u, t). We can use it to measure x, as well, but

it doesn’t generate anything useful. This is because, it turns out, that what

matters in optimal control is not the measurement of “input” vectors like x and

u, but their “outputs”or combined effects given in the form of the problem data.

By inspection, Problem B has four data functions, E,F,f and e:

E : (xf , tf ) �→ R (CU)

e : (xf , tf ) �→ R
Ne (e-units)

F : (x,u, t) �→ R (CU/TU)

f : (x,u, t) �→ R
Nx (f -units = x-units/TU)

The functions E and F are scalar-valued. Only two of the data functions, f

and e, are vector functions. We applied the covector λ to measure the vector

f(x,u, t). We cannot apply λ to measure e because it does not generate a legal

operation either in terms of its units or dimensions. To see this, examine the

vector, e(xf , tf ) ∈ R
Ne , more closely:

e(xf , tf ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e1(xf , tf )

e2(xf , tf )

...

eNe
(xf , tf )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

e1-units

e2-units

...

eNe
-units

∈ R
Ne

In general Ne �= Nx; hence, the operation λ · e(xf , tf ) cannot be performed.

Even in the special case of Ne = Nx, the dot product λ · e(xf , tf ) does not

generate a legal operation in terms of units. This suggests that we need to
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98 Chapter 2. Pontryagin’s Principle

define an endpoint covector , in a manner similar to λ, and given by

ν :=

⎡⎢⎢⎢⎢⎢⎣
ν1

ν2
...

νNe

⎤⎥⎥⎥⎥⎥⎦
CU/e1-units

CU/e2-units
...

CU/eNe
-units

(2.9)

This covector legalizes the “dot product”

ν · e(xf , tf ) :=

Ne∑
i=1

νiei(xf , tf )

and produces a measurement mechanism for the data given by the e-function.

It can be easily verified that the unit of the scalar resulting from this operation

is CU . This is exactly the same as the unit of E; hence, we can legally add E

to the scalar product ν · e(xf , tf ), and generate the quantity,

E(ν,xf , tf ) := E(xf , tf ) + νTe(xf , tf ) (2.10)

The function E is called the Endpoint Lagrangian .

Illustrating the Concept: Constructing the Endpoint Lagrangian

For Problem Brac:1, Ne = 2; hence ν ∈ R
2. This implies that we can

define

ν :=

[
ν1

ν2

]
TU/x-units

TU/y-units
(2.11)

Then, the Endpoint Lagrangian is given by

E(ν,xf , tf ) := tf + ν1(xf − xf ) + ν2(yf − yf ), in TUs (2.12)

Thus, through a construction of two covectors, λ and ν, we have essentially

packed all four data functions (E,F,f and e) of Problem B in just two bags of

scalar functions, H and E. These scalar functions form the bases for generating

a collection of conditions known as Pontryagin’s Principle.
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2.4 Introducing Pontryagin’s Principle 101

From the elementary observation

∂H

∂λ
= f (x,u, t)

we can immediately write:

ẋ =
∂H

∂λ
(2.14)

That is, we can recover the state dynamical equations from the Hamiltonian.

Study Problem 2.2

Show that the units of ∂H/∂λ are the same as that of ẋ.

Next, observe that

units of
∂H

∂x
=

CU/TU

x-units
=

CU/x-units

TU
=

λ-units

TU
= units of λ̇

This is not a coincidence! It turns out that the costate satisfies the adjoint

differential equation or. simply, the adjoint equation

−λ̇ =
∂H

∂x
(2.15)

where the minus sign is part of the mathematical technicality that makes Eq. (2.15)

into an“adjoint”: The adjoint of the differential operator, d/dt is given by−d/dt.

This is why the costate is also known as the adjoint covector .

Illustrating the Concept: Constructing the Adjoint Equations

From Eq. (2.15), the adjoint equations for Brac:1 are given by

−λ̇x := ∂xH(λ,x,u) = 0

−λ̇y := ∂yH(λ,x,u) = 0

−λ̇v := ∂vH(λ,x,u) = λx sin θ + λy cos θ

(2.16)

The H-function is called a Hamiltonian because the state-costate pair sat-

isfies the same differential equation as the one encountered in Hamiltonian
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constant) yields a candidate solution for the optimal control. Hence, solving the

pointwise static (finite dimensional) optimization problem in the parameter u

(HMC)

⎧⎪⎨⎪⎩
Minimize

u
H(λ,x,u, t)

Subject to u ∈ U

at each instant of time t, yields a candidate function for the optimal control.

This simple statement is called the Hamiltonian Minimization Condi-

tion (HMC) and is the heart of Pontryagin’s Principle.

Illustrating the Concept: Constructing Problem HMC

Problem HMC for Brac:1 is quite simply formulated as the unconstrained

minimization problem⎧⎪⎨⎪⎩
Minimize

θ
H(λ,x,u) := λxv sin θ + λyv cos θ + λvg cos θ

Subject to θ ∈ R

where we have taken the usual liberty of calling θ a real number rather

than its more appropriate representation, θ ∈ S1.

Tech Alert: The minimization in Problem HMC is to be performed only

with respect to u, and hence the notation, Minimize
u

(i.e., H is to be regarded

as a function of u only , in Problem HMC).

Let us further clarify the meaning of Problem HMC by denoting its objective

function as R(u, t):

(u, t)
R−→ H(λ,x,u, t)

That is, let R(u, t) be the same as H(λ,x,u, t) with λ and x held constant.

Then Problem HMC can be written without the clutter of λ and x as:⎧⎪⎨⎪⎩
Minimize

u
R(u, t)

Subject to u ∈ U

(for each t)
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Deferring a discussion on the details of solving it to Section 2.5, assume, for

the moment, that Problem HMC can be solved. Then, its solution u∗ is given

by some function g:

(λ,x, t)
g−→ u∗ (2.19)

This control function u∗ = g(λ,x, t) is known as the Pontryagin-extremal con-

trol or simply the extremal control .

Illustrating the Concept: Solving Problem HMC - 2/2

The extremal control for Problem Brac:1 is obtained from Eq. (2.18). This

equation can be solved quite readily as:

θ∗︸︷︷︸
u∗

= tan−1

(
λxv

λyv + λvg

)
︸ ︷︷ ︸

g(λ,x)

(2.20)

As simple as this equation seems, note that inverses of trigonometric func-

tions are multi-valued.

A solution to Problem HMC generates an extremal control as some function

g of the costate, state and time:

u∗ = g(λ,x, t) (2.21)

Substituting this function in the dynamcis, ẋ = f(x,u, t), eliminates u and

generates a new differential equation for the states:

ẋ = f (x,u, t)

= f (x, g(λ,x, t), t)

:= f̃ 1(x,λ, t) (2.22)

The state trajectory x∗(·) resulting from Eq. (2.22) is called an an extremal

state trajectory or an extremal arc (in some classical texts), and the state-

control function pair, {x∗(·),u∗(·)}, is called an extremal solution.
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Illustrating the Concept: Generating ODEs for the Extremal States

The extremal states for Brac:1 satisfy the differential equations:

ẋ :=

⎡⎢⎢⎣
ẋ

ẏ

v̇

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
v sin

(
tan−1

(
λxv

λyv+λvg

))
v cos

(
tan−1

(
λxv

λyv+λvg

))
g cos

(
tan−1

(
λxv

λyv+λvg

))
⎤⎥⎥⎥⎦

︸ ︷︷ ︸
f̃1(x,λ)

It is apparent that even though we may have found a candidate optimal

control u∗ by solving Problem HMC, a production of the extremal states is

not complete because we need a quantitative knowledge of the costates. This

knowledge can be obtained by substituting u∗ in the adjoint equation in much

the same way as was done in producing Eq. (2.22). This procedure produces a

new differential equation for the costates that does not depend on u. That is,

substituting Eq. (2.21) in the adjoint equation, λ̇ = −∂xH(λ,x,u, t), generates

a new differential equation for the costates:

−λ̇ = ∂xH(λ,x,u, t)

= ∂xH(λ,x,u, t)
∣∣
u= g(λ,x,t)

(2.23)

:= f̃2(x,λ, t)

Illustrating the Concept: Generating ODEs for the Extremal Costates

The extremal costates for Brac:1 must satisfy the differential equations:

−λ̇x = 0

−λ̇y = 0

−λ̇v = λx sin

[
tan−1

(
λxv

λyv + λvg

)]
+ λy cos

[
tan−1

(
λxv

λyv + λvg

)]
︸ ︷︷ ︸

f̃2(x,λ)

(2.24)

From the general equation of (2.23) and the example of Eq. (2.24) it is evident
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that we need a quantitative knowledge of the states to produce a quantitative

knowledge of the costates and vice versa. That is, solving Problem HMC leads

to a pair of of coupled differential equations:[
ẋ

−λ̇

]
=

[
f̃1(x,λ, t)

f̃2(x,λ, t)

]

In other words, we need to solve a system of 2Nx state-costate differential equa-

tions simultaneously. To achieve this task, we need 2Nx point conditions: prefer-

ably Nx initial conditions on the states and Nx initial conditions on the costates.

We also need the value of the initial (clock) time t0 to propagate the initial con-

dition as well the value of the final time tf to stop the propagation. In all, we

need (2Nx+2) numbers or point conditions. Collecting all of the available point

data for Problem B, we have:

t0 = t0 (1 equation)

x(t0) = x0 (Nx equations)

e(x(tf ), tf ) = 0 (Ne equations)

Illustrating the Concept: Available Point Conditions

The totality of point conditions for Brac:1 are:

t0 = 0 (1 equation)

(x0, y0, v0) = (0, 0, 0) (3 equations)

(xf − xf , yf − yf ) = (0, 0) (2 equations)

(Recall that Nx = 3 and Ne = 2.)

Clearly, not only do we not have any initial condition on λ, we also do not

have the requisite (2Nx +2) point conditions. The deficit of point conditions is

given by

(2Nx + 2)︸ ︷︷ ︸
required

− (1 +Nx +Ne)︸ ︷︷ ︸
available

= Nx + 1−Ne︸ ︷︷ ︸
deficit

(2.25)

For the Brac:1 formulation of the Brachistochrone problem, this deficit of point

conditions is 8− 6 = 2.
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Study Problem 2.3

1. Under what conditions is there a zero deficit of point condi-

tions?

2. Is it possible to have Ne > Nx + 1?

2.4.2 In Search of the Missing Boundary Conditions

A deficit of point conditions in the Hamiltonian system of 2Nx differential equa-

tions implies that there are additional optimality conditions that await discovery.

This point should also be apparent from the fact that, so far, we have not used

the endpoint cost function E in generating any of the optimality conditions

discussed in the previous section.

In seeking the missing point conditions, we cannot just add additional condi-

tions on x0 or xf without changing the problem. This implies that the missing

point conditions must be on λ(t0) and/or on λ(tf ).

So far, we have only used the H function and hence the pair (F,f ). We have

not used the pair (E, e) and hence the function E. As part of this analysis,

consider the gradient of E with respect to xf :

∂E(ν,xf , tf )

∂xf
:=

⎡⎢⎢⎢⎢⎢⎣
∂x1f

E(ν,xf , tf )

∂x2f
E(ν,xf , tf )

...

∂xNxf
E(ν,xf , tf )

⎤⎥⎥⎥⎥⎥⎦
CU/x1-units

CU/x2-units
...

CU/xNx
-units

(2.26)

Obviously, the units of ∂xf
E are the same as the units of λ. Given that E is a

function of the final time variables, it is not too hard to guess that

λ(tf ) =
∂E

∂xf
(2.27)

is a“missing”boundary condition. This equation is called the terminal Transver-

sality Condition .
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Illustrating the Concept: Terminal Transversality Condition

From Eq. (2.12) on page 98, the endpoint Lagrangian for Brac:1 is given

by

E(ν,xf , tf ) := tf + ν1(xf − xf ) + ν2(yf − yf )

Applying Eq. (2.27), we get:

λx(tf ) =
∂E

∂xf

= ν1

λy(tf ) =
∂E

∂yf
= ν2

λv(tf ) =
∂E

∂vf
= 0

(2.28)

It is clear that the transversality condition for λx(tf ) and λy(tf ) pro-

vide no new information in the sense that it says that these two unknown

quantities are equal to two other unknown quantities. The story on the

transversality condition λv(tf ) = 0 is different; it provides a non-trivial

boundary condition. Recall that we need 2 point conditions for Brac:1;

hence, we still need one more point condition to complete the circle.

Study Problem 2.4

Show that the units of λx, λy, ν1 and ν2 in Eq. (2.28) are

all consistent with their definitions given by Eqs. (2.5)

and (2.9).

Equation (2.27) provides us Nx point conditions for λ(t). From Eq. (2.25)

we needed (Nx + 1 − Ne) point conditions; hence, the new number of missing

boundary conditions are

(Nx + 1−Ne)−Nx = 1−Ne

This number seems a little strange as we now seem to have an excess of point

conditions when Ne > 1; however, as evident from Eq. (2.28), we do not actually

haveNx point conditions from Eq. (2.27) but something less. This is because the

Nx equations from the terminal transversality condition contain an additional
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set of Ne unknowns in terms of ν ∈ R
Ne . In other words, the effective number of

equations from Eq. (2.27) is not Nx but (Nx−Ne). This why in Brac:1, we were

able to extract only 3 − 2 = 1 useful condition by applying the transversality

condition. Thus, the correct number of missing boundary conditions is,

(Nx + 1−Ne)− (Nx −Ne) = 1

This “last”missing point condition comes from the Hamiltonian Value Con-

dition§

H [@tf ] = − ∂E

∂tf
(2.29)

where we have used a shorthand notation, H [@tf ], for the value of the Hamil-

tonian at t = tf ; that is,

H [@tf ] ≡ H(λ(tf ),x(tf ),u(tf ), tf )

Illustrating the Concept: Hamiltonian Value Condition

For Brac:1, we have
∂E

∂tf
= 1 (2.30)

Hence, the Hamiltonian value condition is given by

λx(tf )v(tf ) sin θ(tf ) + λy(tf )v(tf ) cos θ(tf ) + λv(tf )g cos θ(tf ) = −1

(2.31)

Study Problem 2.5

Write down the missing units in Eq. (2.29). What are the units

in Eq. (2.30)?

Equations (2.27) and (2.29) complete the set of missing boundary conditions

necessary to obtain a candidate solution to the optimal control problem. The

collection of all these equations constitutes a special boundary value prob-

§The Hamiltonian value condition applies to the lower Hamiltonian discussed later in
Section 2.5.5. No serious error results in mixing up these two Hamiltonians at the the present
time.
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Study Problem 2.6

Collect the complete set of differential and boundary con-

ditions derived in the preceding pages for Brac:1. Obtain,

or discuss how to obtain, a solution to this BVP. Explore

a numerical solution for this BVP in MATLAB or any

other tool set. Discuss the pitfalls.

2.4.4 Solving the BVP: Work, Plug, Pray

It is possible to “solve” the Brachistochrone problem by a simpler process than

the procedure identified in Study Problem 2.6. One such process is semi-

analytic; it is discussed later in Section 3.1, page 171. Semi-analytic proce-

dures, often employed in academic-strength problems, usually use clever coor-

dinate transformations and other mathematical “tricks” to avoid or beat down

the BVP to something “manageable.” While such ad hoc techniques are indeed

useful and important for the analysis of specific problems, they are not portable

to the broader ProblemB. Furthermore, ad hoc techniques have the appearance

of making“easy”problems look hard. On the other hand, the systematic process

summarized in Fig. 2.12 is generic and extremely powerful. The generation of

Problem Bλ might seem arduous at first, but note that the process is routine;

hence, it can be algorithmized. The routineness of this process is demonstrated

in Chapter 3 while an algorithm to solve Problem Bλ is encoded in DIDO.

�
Easy Problems Made Hard

Recall that the production of the differential equations

ẋ = f̃1(x,λ, t)

−λ̇ = f̃2(x,λ, t)

assumed that we can solve Problem HMC explicitly in an equation form:

u = g(λ,x, t)

Unfortunately, this is often not possible and is the subject of Section 2.5 on

page 114. In other words, it is not easy or possible to produce an“unconstrained”
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BVP; more often, it can be formulated only as a differential-algebraic in-

equality . Standard methods for solving differential-algebraic inequalities are

based on “optimal control techniques,” such as collocation methods, which are

briefly introduced later in Section 2.9.2, page 157. This, coming to a full circle,

implies that Problem Bλ is not necessarily simpler than Problem B! While

this realization may seem “obvious” today, note, however, that it is result of a

culmination of research that took place from the 1960s to the year 2000.

Interestingly, if a problem is posed as a differential-algebraic inequality, it

may be possible to “map it”down to an optimal control problem, that is, a down

arrow in Fig. 2.12. In this case, the differential equations may be viewed as a

manifestation of something more fundamental: an optimal control problem!

��
Symplectic BVPs

Problem Bλ is not a generic BVP: the 2Nx differential equations have a sym-

plectic structure

ẏ = J∇yH(y,u, t), J :=

[
0 Id

−Id 0

]
(2.32)

where y := (x,λ) ∈ R
Nx ×R

Nx and Id is an Nx×Nx identity matrix. Hence, in

principle, the entire power of symplectic vector space analysis can be brought to

bear on analyzing Problem Bλ. Note, however, that the analysis of Problem Bλ

is a little more complicated than those encountered in mathematical physics due

to the presence of u. Conversely, the entire power of optimal control theory can

be brought to bear on the analysis of problems in mathematical physics. In this

spirit, as physicists discover that more and more of Nature’s laws are symplectic,

it is apparent that Nature must be solving an optimal control problem (à la

Hamilton’s principle of “least”action). Thus, a grand physics Problem B awaits

discovery.

2.5 Minimizing the Hamiltonian

It is evident from the previous section that the problem of minimizing the Hamil-

tonian with respect to the control u (i.e., Problem HMC) is a critical step in

applying Pontryagin’s Principle for any given problem. Problem HMC is a static
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2.5 Minimizing the Hamiltonian 117

in Fig. 2.14 (b).

Study Problem 2.7

Sketch figures to show the possibility of the following:

1. ∂uH = 0 when u∗ = ulower.

2. ∂uH = 0 when u∗ = uupper.

Based on these possibilities, revise the three conditions dis-

cussed in the paragraph preceding this problem.

The revised three conditions (resulting from the solution to Study Prob-

lem 2.7) can be unified through the following additional observations: When

u∗ = ulower, we can rewrite the condition, ∂uH ≥ 0, as

∂uH + μ = 0, μ ≤ 0 (2.35)

where μ is the “equalizer”; that is, it cancels out ∂uH exactly. This seemingly

silly trick is wonderfully powerful. To see this, observe that

units of μ = units of
∂H

∂u
=

H-units

u-units

(
=

CU/TU

u-units

)
Hence, μ is a covector that can be used to measure u in terms of H-units

(= CU/TU). Consequently, the dot product

μ · u (H-units)

is a legal operation that produces a scalar in exactly the same units as H . This

implies we can add this quantity to H to produce a new function

H(μ,λ,x,u, t) := H(λ,x,u, t) + μTu

called the Lagrangian of the Hamiltonian . Now observe that

∂uH = ∂uH + μ
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Comparing this equation to Eq. (2.35), we can write

∂uH = 0, μ ≤ 0 (2.36)

when u∗ = ulower.

Study Problem 2.8

Following the same process that led to Eq. (2.36), show

that

1. ∂uH = 0, μ ≥ 0 if u∗ = uupper.

2. ∂uH = 0, μ = 0 if ulower ≤ u∗ ≤ uupper.

Collecting the results of Study Problem 2.8 and Eq. (2.36), the three condi-

tions generated by Study Problem 2.7 on page 117 can be formalized as

• the stationarity condition

∂H

∂u
= 0 (2.37)

• and the complementarity condition

μi

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≤ 0 if ui = ulower

i

= 0 if ulower
i < ui < uupper

i

≥ 0 if ui = uupper
i

(2.38)

This set of two conditions is a special case of more general conditions known as

the Karush-Kuhn-Tucker (KKT) conditions . Equations (2.37) and (2.38)

are the necessary conditions for the special “box-constrained”HMC problem:

(box-constrained HMC)

⎧⎪⎨⎪⎩
Minimize

u
H(λ,x,u, t)

Subject to ulower ≤ u ≤ uupper
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2.5.2 KKT Conditions for Problem HMC

Consider the case when u �→ H(λ,x,u, t) is differentiable and the control space

U is given by functional inequalities

hL ≤ h(u) ≤ hU (2.39)

where hL and hU are the lower and upper bounds on h(u), respectively. That

is,

U =
{
u ∈ R

Nu : hL ≤ h(u) ≤ hU
}

(2.40)

Then, Problem HMC is a nonlinear programming (NLP) problem :

(HMC = NLP )

⎧⎪⎨⎪⎩
Minimize

u
H(λ,x,u, t)

Subject to hL ≤ h(u) ≤ hU
(2.41)

Notation Alert: Recall that (see page xxiii) we use uppercase letters for cost

functions and the corresponding lowercases for constraints. In remaining true

to this style, we use the letter h for naming functions and its corresponding

bounds for constraints that belong to minimizing H . This is also exactly the

same reason why we chose the symbol h for the path function in Problem P

in Section 1.4.2 on page 46. This notational convention also implies that H

goes with the pair (H,h).

According to Pontryagin’s Principle, the Hamiltonian must be minimized at

each instant of time t. To do this, we apply the KKT conditions to Problem

HMC = NLP ; that is, we define the Lagrangian of the Hamiltonian

H(μ,λ,x,u, t) := H(λ,x,u, t) + μTh(u) (2.42)

where t �→ μ ∈ R
Nh is a time-dependent KKT multiplier function associated

with the functional constraint given by Eq. (2.39); that is μ is a path covector
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defined by

μ :=

⎡⎢⎢⎢⎢⎢⎢⎣
μ1

μ2

...

μNh

⎤⎥⎥⎥⎥⎥⎥⎦

CU/TU
h1-units

CU/TU
h2-units

...
CU/TU

hNh
-units

(2.43)

From the KKT conditions, the Lagrangian of the Hamiltonian H must be sta-

tionary with respect to the control u:

∂H

∂u
=

∂H

∂u
+

(
∂h

∂u

)T

μ = 0 (2.44)

In addition, at each instant of time t the multiplier-constraint pair (μ,h(u))

must satisfy the complementarity condition :

μi

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

≤ 0 if hi(u) = hL
i

= 0 if hL
i < hi(u) < hU

i

≥ 0 if hi(u) = hU
i

unrestricted if hL
i = hU

i

(2.45)

These complementarity conditions determine the switching structure of the

optimal control as they can also be written as

hi(u(t)) = hL
i if μi(t) ≤ 0

hL
i < hi(u(t)) < hU

i if μi(t) = 0

hi(u(t)) = hU
i if μi(t) ≥ 0

hL
i = hU

i if μi(t) unrestricted

(2.46)

where the time-dependence of the relevant variables is explicitly noted.
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2.5.3 Time-Varying Control Space‖

In many practical problems, the control space U is not “static” but varies in

time as well as with variations in the state x. When U is time-varying, we

denote it as U(t). Pontryagin’s Principle continues to hold in all these cases

with embarrassing simplicity. To illustrate this point, let

U(t) :=
{
u ∈ R

Nu : hL(t) ≤ h(u, t) ≤ hU (t)
}

(2.47)

That is, the inequalities that define the control space depend explicitly on time:

Compare Eq. (2.47) with (2.40). Since Problem HMC requires that the Hamil-

tonian be minimized at each instant of time, the KKT conditions are the same

as before except that the conditions must hold explicitly at each instant of time

t; thus, we have:

μi

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

≤ 0 if hi(u, t) = hL
i (t)

= 0 if hL
i (t) < hi(u, t) < hU

i (t)

≥ 0 if hi(u, t) = hU
i (t)

unrestricted if hL
i (t) = hU

i (t)

(2.48)

2.5.4 Solving Problem HMC

When U is a continuous set (see Fig. 2.2 on page 87), Problem HMC is an

NLP. If U is discrete, Problem HMC is a discrete/integer programming problem.

Hence, in general, Problem HMC is a nonlinear mixed-variable (i.e., continuous-

discrete) programming problem. Barring an extremely limited number of special

cases, there are no closed-form solutions to NLPs or integer programming prob-

lems. Not surprisingly, in many practical applications, Problem HMC cannot

be solved “by hand” or “analytically.” Fortunately, this is not a major deterrent

for generating usable solutions to practical optimal control problems. To un-

derstand this critical point, it is necessary to appreciate the agonies, nuances,

caveats and joys of producing usable solutions.

‖This section may be skipped without loss in continuity.
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122 Chapter 2. Pontryagin’s Principle

The Agonies of Analytical Solutions

An analytical or “closed form” solution is generally defined as a quantity that

can be written in terms of elementary operations (e.g., +,− . . .) over elementary

functions: sines, cosines, exponentials, etc. A solution is generally considered

to be “approximate” or, worse, “numerical” (apparently, of lower quality) if it is

expressed in terms of a large number (such as a hundred or more) of elemen-

tary operations over elementary functions; for example, a truncated finite sum

of an infinite series. The problem with these (mis)perceptions is that the com-

putations of elementary functions are eventually approximate and maybe even

done “surreptitiously” by a truncated series expansion (for example, consider

how a computer computes sin(12.3), e4.56, π etc.). In other words, when the

claims of an analytical solution are dissected, it turns out it is an unfortunate

myth that must be rejected with extreme prejudice. There is no grand universal

mathematical theorem which guarantees that all solutions to all mathematical

problems are expressible in terms of a handful of elementary functions. Within

the context of mathematically accurate expectations, Problem HMC is indeed

solvable in a vast number of situations.

A solution to Problem HMC can be stated compactly using the argmin

notation

u∗ = argmin
u∈U

H(λ,x,u, t) (2.49)

which is shorthand for the statement that the argument (i.e., u) of the minimum

of H with respect to u is equal to u∗. This seemingly high-brow notation is

useful and clever at the same time. It is useful in the sense that it avoids the

use of the generic symbol g, used previously (see Eq. (2.21) on page 105) and

replaces it by a more evocative notation given by Eq. (2.49). See also the Tech

Talk box later on page 196. Equation (2.49) is quite clever because, through the

argmin notation, every optimization problem looks solved in an exact analytical

form!

The Phantom of Global Optimization

A necessary condition for solving Problem B is a globally optimal solution to

Problem HMC. Consider the situation illustrated in Fig. 2.15. The globally

optimal solution is point d. The necessary conditions for this globally optimal

solution are Eqs. (2.33) and (2.34). They are also the necessary conditions for
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2.5.5 A Tale of Two, Maybe Three Hamiltonians

A solution to Problem HMC generates the function:

(λ,x, t)
g−→ u∗ = argmin

u∈U

H(λ,x,u, t) (2.50)

When u∗ is substituted for u in H(λ,x,u, t), it yields the minimized Hamil-

tonian :

H(λ,x, t) := min
u∈U

H(λ,x,u, t) ≡ H(λ,x,u, t)
∣∣
u=g(λ,x,t)

(2.51)

Illustrating the Concept: The Minimized Hamiltonian

The minimized Hamiltonian for Brac:1 is obtained by substituting

Eq. (2.20) in (2.8):

H(λ,x) := λxv sin

(
tan−1

(
λxv

λyv + λvg

))
+λyv cos

(
tan−1

(
λxv

λyv + λvg

))
+λvg cos

(
tan−1

(
λxv

λyv + λvg

))
Clearly, H is nonlinear in λ (while H is always linear).

At this point, we do not know if the left-hand side of Eq. (2.51) is still a Hamil-

tonian, that is, if it satisfies Eq. (2.17). It turns out that it indeed does if we

assume the function g in Eq. (2.50) is differentiable and u∗ is interior to U.

�
Study Problem 2.9

Show that H is a Hamiltonian; that is, under appro-

priate assumptions, it satisfies the equations

ẋ =
∂H
∂λ

−λ̇ =
∂H
∂x

(2.52)

Catalog all the assumptions needed for this proof.
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126 Chapter 2. Pontryagin’s Principle

The function, H, is called the lower Hamiltonian . The upper Hamil-

tonian is obtained if H were to be maximized instead of minimized. In their

original work, Pontryagin et al maximized the Hamiltonian to be consistent

with the archetypal or Hamilton’s Hamiltonian . This original Hamiltonian

is obtained in the classical calculus of variations through a process known as the

Legendre transform. Thanks to the simplifications and insights offered by Pon-

tryagin’s Principle, the only difference between the two Hamiltonians is a sign

change; see also Section 1.4.4 on page 55. In this book, we use the “minimum

version” of Pontryagin’s Principle.

In general, H is nonlinear in λ and non-differentiable; however, it evolves

according to a very simple equation known as the Hamiltonian Evolution

Equation :

dH
dt

=
∂H

∂t
(2.53)

Illustrating the Concept: The Hamiltonian Evolution Equation

From Eq. (2.8) it is clear that the (control) Hamiltonian for Problem

Brac:1 does not depend explicitly with time; hence, we have:

∂H

∂t
= 0

From the Hamiltonian evolution equation, this implies:

H(λ(t),x(t)) = constant (w.r.t. time)

More explicitly, we can write:

λx(t)v(t) sin θ∗[@t] + λy(t)v(t) cos θ
∗[@t] + λv(t)g cos θ

∗[@t] = constant

(2.54)

where θ∗[@t] is the shorthand notation for

θ∗[@t] ≡ θ∗(x(t),λ(t)) = tan−1

(
λx(t)v(t)

λy(t)v(t) + λv(t)g

)

The Hamiltonian evolution equation is an integral of motion: It has signif-

icant practical value in solving both academic and industrial optimal control

problems.
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Study Problem 2.10

In Problem B, introduce an (Nx + 1)th state variable

ẋNx+1 = 1 (2.55)

with initial condition, xNx+1(t0) = t0. Then, the data in

the modified problem become time-invariant (i.e., not an

explicit function of time) with x ∈ R
Nx+1.

1. Show that λNx+1(t) = −H(λ(t),x(t), t) where H is

the lower Hamiltonian to the original Problem B.

2.
�

In the original Problem B, it is sufficient for f and

F to be merely measurable with respect to t. In view

of this, criticize the suggestion that time-invariant and

time-varying problem data are equivalent under the in-

troduction of Eq. (2.55).

2.6 A Cheat Sheet for Pontryagin’s Principle

The totality of necessary conditions for Problem B can be summarized in the

form of a major result:

Theorem 2.1 (Pontryagin’s Principle) Given an optimal solution to Prob-

lem B, there exists an absolutely continuous covector function λ(·) and a cov-

ector ν that satisfy

• the three Hamiltonian conditions:

1. Hamiltonian minimization condition,

2. Hamiltonian value condition,

3. Hamiltonian evolution equation

• the adjoint equations, and

• the transversality condition.

Remark 2.1.1 Pontryagin’s Principle has not solved Problem B: it simply

states the necessary conditions that a candidate optimal solution must satisfy.
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128 Chapter 2. Pontryagin’s Principle

Moreover, one of these necessary conditions, that is, the Hamiltonian Minimiza-

tion Condition

(HMC)

⎧⎪⎨⎪⎩
Minimize

u
H(λ,x,u, t)

Subject to u ∈ U

(2.56)

is posed as a problem in itself, whose solution can be symbolically stated as:

(λ,x, t) �→ u∗ = argmin
u∈U

H(λ,x,u, t) (2.57)

Once the function u∗(·) is obtained in the form of Eq.(2.57) (i.e., by solving

Problem HMC), then an extremal may be obtained by solving the Hamiltonian

system of 2Nx ordinary differential equations

ẋ =
∂H

∂λ
(2.58a)

−λ̇ =
∂H

∂x
(2.58b)

with boundary conditions

x(t0) = x0 (2.59a)

e(x(tf ), tf ) = 0 (2.59b)

λ(tf ) =
∂E

∂xf
(2.59c)

that must be satisfied at the start of the clock at the given time

t0 = t0 (2.60)

and at the “optimal” stopping time

H[@tf ] = − ∂E

∂tf
(2.61)

where H[@tf ] is shorthand for for the value of H at tf :

H[@tf ] ≡ H(λ(tf ),x(tf ), tf )
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2.6 A Cheat Sheet for Pontryagin’s Principle 129

Remark 2.1.2 The Hamiltonian evolution equation

dH
dt

=
∂H

∂t
(2.62)

is an integral of motion. It serves an extremely important role in the verification

and validation of the computed solution, either by means of analytical equations

for simple problems or in providing an equation to check the optimality of a

numerical solution.

At first, all these equations might seem a little overwhelming, particularly to

a beginner. After some practice (i.e., after studying Chapters 3 and 4), they will

seem relatively straightforward and even logical. In the meantime, a beginning

student might find it useful to have some quick ways of remembering all the

necessary conditions. To this end, we offer the following mnemonics:

• 3HAT : This stands for the three Hamiltonian conditions, the adjoint

equation and the transversality condition summarized in Theorem 2.1.

• HAMVET : Pontryagin’s HAMVET (with apologies to Shakespeare) comes

from the following systematic steps that must be carried out for any given

problem to develop its necessary conditions for optimality:

(a) Construct the Hamiltonian. H

(b) Develop the Adjoint equations. A

(c) Minimize the Hamiltonian. M

(d) Evaluate the Hamiltonian Value condition. V

(e) Integrate the Hamiltonian Evolution equation. E

(f) Formulate the Transversality conditions. T

• Engineers Value MATH : This is simply anagramming HAMVET to

EV MATH. Interestingly, it turns out that MATH forms the core of Pon-

tryagin’s Principle.

Remark 2.1.3
�

The control Hamiltonian given in Eq. (2.7) is in its “normal

form” and not quite complete; the “complete” Hamiltonian for Problem B is

actually given by

H(λ,x,u, t) = ν0F (x,u, t) + λT f(x,u, t) (2.63)
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130 Chapter 2. Pontryagin’s Principle

where ν0 is called the cost multiplier . Additional necessary conditions include

the constancy and nonnegativity of the cost-multiplier function: t �→ ν0 =

constant ≥ 0. This condition implies two cases: either ν0 = 0 or ν0 �= 0.

1. ν0 = 0

If ν0 = 0, then the Hamiltonian and all the equations derived from it

are independent of the cost! This situation is possible but is deemed

“abnormal.”

2. ν0 �= 0

If ν0 �= 0, then it simply scales the Hamiltonian by a positive constant;

hence, we can divide H by ν0 and analyze the “scaled”Hamiltonian. This

scaling is called the Normality Condition and is equivalent to arbitrar-

ily setting ν0 = 1 in Eq. (2.63).

Clearly, we must have nontrivial multipliers, (ν0,λ) �≡ (0,0); that is, we

must not have all covectors equal to zero. This Nontriviality Condition can

also be stated as

ν0 + ‖λ(·)‖L∞ > 0 (2.64)

Pontryagin’s Principle as stated in Theorem 2.1 is for the normal case. It can be

restated for all cases by writing the Hamiltonian in the form given by Eq.(2.63)

and including the additional nuances of constancy, nonnegativity and nontrivi-

ality as part of the necessary conditions.

��
Geek Speak: A lot of technical details are missing in our state-

ment of Pontryagin’s Principle as codified in Theorem 2.1. For instance,

the standard assumptions for the function space for the state and control

trajectories are x(·) ∈ W 1,1 and u(·) ∈ L∞. Because we assumed f to be

Lipschitz in x (actually, C1 in x), we can write (x(·),u(·)) ∈ W 1,∞×L∞.

Study Problem 2.11

Construct the complete set of differential and boundary

conditions obtained for any one of the other alternative

formulations of the Brachistochrone problem; e.g., Prob-

lem Brac : 2 developed in Chapter 1. Does this alterna-

tive formulation generate any new information? Discuss.

I. M. Ross, A Primer on Pontraygin's Principle in Optimal Control, Second Edition, Collegiate Publishers, 2015

Copyrighted Material: Not For Redistribution



2.7 *Pontryagin’s Principle for Problem P 131

(Hint: Yes! This is why different mathematical transcrip-

tions of the same word problem are extremely useful in

better understanding the structure of optimal solutions.)

Study Problem 2.12

Using the extremal controls obtained in Study Prob-

lem 2.11, write down the expressions for H, the lower

Hamiltonian, for each of these example problems. Show

that H is not necessarily linear in λ or even a differen-

tiable function. Is ẋ = ∂λH? Is λ̇ = −∂xH? Is it possible

for H to be multivalued?

2.7
�

Pontryagin’s Principle for Problem P

Problem P is defined in Section 1.4.2 on page 47, and is repeated here for quick

reference:

Xsearch = R
Nx Usearch = R

Nu

x = (x1, . . . , xNx
) u = (u1, . . . , uNu

)

⎫⎬⎭ (preamble)

problem︷︸︸︷
(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J [x(·),u(·), t0, tf ] :=
E(x0,xf , t0, tf ) +

∫ tf

t0

F (x(t),u(t), t)

⎫⎪⎬⎪⎭ (cost)

Subject to ẋ = f(x(t),u(t), t)
}

(dynamics)

eL ≤ e(x0,xf , t0, tf ) ≤ eU
}

(events)

hL ≤ h(x(t),u(t), t) ≤ hU
}

(path)

The pair (F,f ) is the same in both problems P and B; hence, the definition
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132 Chapter 2. Pontryagin’s Principle

of the control or Pontryagin’s Hamiltonian remains unchanged:

H(λ,x,u, t) := F (x,u, t) + λTf(x,u, t)

The endpoint Lagrangian depends only on the pair (E, e); hence, E is modified

only in terms of its functional dependencies:

E(ν,x0,xf , t0, tf ) := E(x0,xf , t0, tf ) + νT e(x0,xf , t0, tf)

Because a complementarity condition goes hand-in-hand with inequality-type

constraints, we define ν † e as shorthand for the conditions

νi

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

≤ 0 if ei(x0,xf , t0, tf ) = eLi

= 0 if eLi < ei(x0,xf , t0, tf ) < eUi

≥ 0 if ei(x0,xf , t0, tf ) = eUi

unrestricted if eLi = eUi

(2.65)

with μ † h defined similarly.

The control space in Problem P is state-dependent and parameterized by

functional inequalities:

U(x, t) :=
{
u ∈ R

Nu : hL ≤ h(x,u, t) ≤ hU
}

The symbol U(x, t) means that U is not a constant (as in Problem B; see

Fig. 1.26 on page 43) but that it depends jointly on x and t. Thus U(x, t) is

also a map from (x, t) to a set or a set-valued map.∗ Despite this infusion of

practically inspired mathematical complication, Problem HMC has the same

functional form as before:

(HMC)

⎧⎪⎨⎪⎩
Minimize

u
H(λ,x,u, t)

Subject to hL ≤ h(x,u, t) ≤ hU
(2.66)

∗This simple observation illustrates why set-valued analysis has direct practical applica-
tions.
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2.7 *Pontryagin’s Principle for Problem P 133

Thus, the Lagrangian of the Hamiltonian is given by

H(μ,λ,x,u, t) := H(λ,x,u, t) + μTh(x,u, t)

and the KKT conditions for Problem HMC can be written compactly as

∂uH = 0 and μ † h

where μ † h, as noted previously, is defined similar to Eq. (2.65).

The lower Hamiltonian is also functionally the same as before

H(λ,x, t) := min
u∈U(x,t)

H(λ,x,u, t)

with the caveat that U depends on x and t.

One of the major modifications to Pontryagin’s original principle is that the

adjoint equations, while similar to that of Problem B, are now based on H and

not H :

−λ̇ =
∂H

∂x

From the complementarity condition μ † h, it follows that the adjoint covector

has the same co-dynamics as Problem B when the state trajectory is “inside”the

path constraint (if necessary, refer to Fig. 1.28 on page 46). Obviously, when the

state trajectory rides the path constraint, the adjoint equation has additional

terms. See Study Problem 2.14 at the end of this section on page 136.

The terminal transversality condition remains the same as before (function-

ally)

λ(tf ) =
∂E

∂xf

while we “gain” an initial transversality condition :

λ(t0) = − ∂E

∂x0

Likewise, we have two Hamiltonian value conditions

H[@t0] =
∂E

∂t0
and H[@tf ] = − ∂E

∂tf

that correspond to optimal start and stop times. Thus, the HAMVET mnemonic
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and other ones discussed on page 129 still apply, albeit with a few different de-

tails.

The collection of all unknowns resulting from Pontryagin’s Principle for

Problem P are as follows:

1. The system trajectory, t �→ (x,u) ∈ R
Nx × R

Nu ;

2. The adjoint covector funtion, t �→ λ ∈ R
Nx ;

3. The path covector function, t �→ μ ∈ R
Nh ;

4. The endpoint covector, ν ∈ R
Ne ; and

5. The initial and final times, t0 ∈ R and tf ∈ R.

These unknowns must satisfy a collection of differential and algebraic con-

straints, with the latter structured in terms of conditional inequalities. Col-

lecting all these equations and inequalities we can constitute Problem Pλ as

follows:

(Pλ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t)− ∂λH(μ(t),λ(t),x(t),u(t), t) = 0 (state eqns)

λ̇(t) + ∂xH(μ(t),λ(t),x(t),u(t), t) = 0 (costate eqns)

hL ≤ h(x(t),u(t), t) ≤ hU (path condition)

∂uH(μ(t),λ(t),x(t),u(t), t) = 0 (Hamiltonian

μ † h Minimization)

eL ≤ e
(
x0,xf , t0, tf

) ≤ eU (endpoint eqns)

λ(t0) + ∂x0
E(ν,x0,xf , t0, tf ) = 0 (initial and

λ(tf )− ∂xf
E(ν,x0,xf , t0, tf ) = 0 final transversality

ν † e conditions)

H[@t0]− ∂t0E(ν,x0,xf , t0, tf ) = 0 (Hamiltonian

H[@tf ] + ∂tfE(ν,x0,xf , t0, tf ) = 0 value conditons)
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Problem Pλ is not a “simple”BVP (compare with Problem Bλ) because the

inequalities and complementarity conditions generate switches, jumps, phases

and so on in one or more variables at one or more (unknown) interior points. It

will be apparent later (see Section 2.9 on page 150) that solving even a simple

BVP is cursed with extreme sensitivity because of the symplectic structure

(see page 114) of the Hamiltonian system (state-costate pair). This is why

the simpler path to finding a solution to Problem Pλ is through the covector

mapping principle discussed later in Section 2.9.2 on page 157.

Study Problem 2.13

Show that the “additional” necessary conditions for Prob-

lem B are given by

1. λ(t0) = −νx0

2. H[@t0] = νt0

where (νx0
, νt0) is the covector pair associated with the

initial conditions x0 = x0 and t0 = t0, respectively.

��
A Caveat or Two About Problem Pλ

In Pontryagin et al[75], the development and formulation of Problem Pλ is

different from our presentation: It does not contain the mixed state-control

constraints, and the formulation of the necessary conditions is based on differ-

entiating h. The addition of a path constraint (to Problem B), first as a pure

state constraint (i.e., h is a function of x only) and later as a mixed state-control

constraint (as in Problem P ) has generated a substantial amount of literature

since Pontryagin’s ground-breaking work. See [24] and the references contained

therein. New technical difficulties arise in extending the necessary conditions

for Problem P . As a result, there are a number of different “versions” of “Pon-

tryagin’s” Principle. So, the question becomes which one should we choose?

We have chosen the version presented on page 134 because it aligns with

the covector mapping principle implemented in DIDO. Refer to the discussions

associated with Fig. 2.28 on page 164. According to Dmitruk[26, 27], this ver-

sion of Pontryagin’s Principle was developed by Milyutin and Dubovitskii and

published in Russian over the period 1963–1981. Starting with his doctoral

thesis[20], Clarke[21, 22, 24] and others (see [99] and the references contained
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therein) have shown that nonsmooth analysis is the “simpler”and unified frame-

work for a general theory of optimal control. From this starting point, Prob-

lem Pλ is also derived in [22, 24] with additional abstractions.

We have ignored a large number of technical assumptions that go along with

Problem Pλ, the most dominant of these being in the form of constraint quali-

fications. In other words, problem formulation, once again, takes center stage!

Because Problem P is widely used for practical applications, it is important

to acquire a working knowledge of Problem Pλ. These elements are described

next; however, to better understand these details, we strongly recommend an

attempt to solve Study Problem 2.14.

Study Problem 2.14

Recall that the control space U in Problem Brac:3 defined

on page 28 was state dependent. Pontryagin’s Principle

for Problem B is inapplicable to this problem formulation.

Using the results from this section, develop the necessary

conditions for Problem Brac:3. Do these conditions gen-

erate any new insights?

Computational Tip: The obstacle avoidance problem and other RTOC im-

plementations require moving state constraints in the problem formulation.

See, for example, page 71 and [17, 40, 59]. As a result, it is every easy

to inadvertently formulate problems that violate many of the assumptions

needed in the statement of Problem Pλ. In such situations, great care must

be exercised in how the problem is formulated, particularly in a DIDO en-

vironment, because the coded problem may either produce incorrect results,

or may generate correct results but only after a long computational time[84].

Reformulating a problem is critical to producing correct solutions. See, for

example, Section 4.1.4 on page 253.

A Deeper Dive on The Impact of Path Constraints

The costate and path covector trajectories t �→ (λ,μ) have characteristically

different shapes in the presence of active state and mixed constraints. This can
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be quickly observed by expanding the costate equations for Problem P as

−λ̇ = ∂xH

= ∂xH +

(
∂h

∂x

)T

μ (with μ † h) (2.67)

If μi = 0, then the corresponding costate trajectory has “unconstrained” co-

dynamics, but over regions where μi �= 0, the related adjoint equation acquires

additional terms that reshape the (costate) trajectory.

Illustrating the Concept: A Constrained Brachistochrone Problem

Consider Brac:1 with an added path constraint:

y ≤ ax+ b (2.68)

With h(x) := y − ax, hL = −∞, hU = b, we have

−λ̇x(t) = −aμ(t) (2.69a)

−λ̇y(t) = μ(t) (2.69b)

−λ̇v(t) = λx sin θ + λy cos θ (2.69c)

where μ(t) is complementary to h(x(t)) according to

μ(t)

⎧⎪⎨⎪⎩ = 0 if y(t)− ax(t) < b

> 0 if y(t)− ax(t) = b
(2.70)

Compare this with Eq. (2.16) on page 101. Equations (2.69) and (2.70)

are illustrated in Fig. 2.17.

Study Problem 2.15

Consider Brac:1 with with the addition of Eq. (2.68).

1. Prove that λx must be non-decreasing while λy must

be non-increasing as apparent from Fig. 2.17.

2. Prove that t �→ λv is affine over the constraint bound-

ary y = ax+ b.

3. Is the trajectory t �→ μ continuous?
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L∞). Unfortunately, this is not the case:

t �→ μ may have impulses.

An impulsive μ implies (see Eq. (2.67)) that the costate trajectory may have

jumps; hence, t �→ λ is no longer assured to be absolutely continuous. This

phenomenon is not some mathematical minutia that can be pushed under the

rug; it is quite real and quite practical, as illustrated by the following physical

problem due to Breakwell[16].

Illustrating the Concept: Impulsive Path Covector Trajectory

The Breakwell problem is a simple double integrator ẍ = u with a path con-

straint x ≤ � and quadratic cost
∫ 1

0
u2(t)dt; see Section 4.4.3 on page 270

for details. As outlined in §4.4.3, we have

−λ̇x(t) = μ(t)

⎧⎪⎨⎪⎩ = 0 if x(t) < �

= 0 if x(t) = �
(2.71)

If we hastily conclude that λx(t) must be a constant, then we get no so-

lution for the boundary condition x(0) = x(1) = 0, ẋ(0) = −ẋ(1) = 1,

an erroneous result that is quite apparent from elementary analysis. This

“paradox” is easily solvable if we “allow” μ(t) to have precise and finite

impulses such that∫ te+ε

te−ε

μ(t) dt = η (> 0 as 0 < ε → 0) (2.72)

where te is an entry or exit time; that is, te is the time when x(t) enters

or leaves the boundary x(t) = �; see Fig. 2.18. With this expansion of our

mathematical horizons, Eq. (2.71) now tells us that t �→ λx is piecewise

constant with allowable jumps at te. As a result of the sign of μ > 0 (or

η > 0) these jumps must be downward for λx(t).
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mentarity of ν with h at te (denoted by η †h[@te]) is inherited from μ because

the integration is over a positive measure.

��
Tech Talk: Because of the need to incorporate atomic measures,

Eq. (2.73a) can be written more “cleanly” as a Lebesgue-Stieltjes integral:∫
∂xh[@t] μ(t) dt =

∫
∂xh[@t] dμ̃(t)

Such an approach is commonly found in the mathematical literature with

extensive use of Radon measures. Another approach is to write μ(t) as

the sum of two functions

μ = μL∞ +μδ

where μδ is of atomic measure. We have used this approach implicitly in

characterizing μδ as a collection of finite impulses.

The Hamiltonian Evolution Equation for Problem Pλ

Recall that the Hamiltonian evolution equation was an integral of motion for

Problem B. For Problem P , this evolution equation is given analogously by

dH
dt

=
∂H

∂t
(2.74)

Similar to Problem B, Eq. (2.74) serves an extremely important role in the

verification and validation of a computed solution. Similar to Eq. (2.67), we

can write Eq. (2.74) as

dH
dt

= ∂tH +

(
∂h

∂t

)T

μ (with μ † h)

Because t �→ μ may have finite impulses, H may jump similarly to λ(t). This

jump condition may be derived similarly to the procedure used for the costate

trajectory and written as

H[@t+e ]−H[@t−e ] =

(
∂h

∂t

)T

t=te

η (with η † h[@te]) (2.75)
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Because DIDO makes problem-solving “easy,” it is essential to exercise great re-

straint in solving problems without analysis; that is, generating solutions with-

out analyzing (not solving!) Problem Pλ. An analysis of Problem P (and hence

Pλ) includes a cognizance of the structure of t �→ μ. Recall that the Breakwell

problem warned us that t �→ μ may have finite impulses, while the constrained

Brachistochrone problem only gave us discontinuities in μ(t). It is critical to

understand Problem Pλ in advance of coding (see Section 4.1.4 on page 253) or

modifying a working code before declaring a problem to be “hard.”

In a practical and computational setting, a useful rule of thumb for the

detection of jumps is the notion of the order of a state constraint . If h

depends on x only, and possibly t, then its time derivative is given by

dh(x, t)

dt
= ∂xh(x, t)

T ẋ+ ∂th(x, t)

= ∂xh(x, t)
Tf(x,u, t) + ∂th(x, t) (2.76)

If Eq. (2.76) depends explicitly on u, then h is said to be of order one. For

example, Eq. (2.68) is of order one because

ḣ(x) = ẏ − aẋ

= v cos θ − av sin θ (θ is control)

When a constraint is of order one, it is typical for t �→ μ to not have impulses;

see Fig. 2.17.

It is quite possible that Eq. (2.76) may contain no control terms. For exam-

ple, in the Breakwell problem we have

ḣ(x) = ẋ

= v

In such a situation, we can differentiate h again. If u appears explicitly for the

second derivative, then h is called a path constraint of order two. Performing

this exercise for the Breakwell problem we have

ḧ(x) = v̇

= u
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Hence, the constraint h(x) = x ≤ � is of second order. It is typical for second

and higher-order constraints to have impulsive path covector trajectories; see

Fig. 2.18.

Note from these discussions that as the problem becomes more practical,

Pontryagin’s Principle provides many more conditions for analysis.

Computational Tip: In one of its “dual” operating modes, DIDO uses a

Galerkin approximation for the covector trajectories. This mode “smooths

out” impulses and discontinuities in dual spaces to achieve computational

efficiency. For higher dual accuracy, other operating modes may be used but

at the price of reduced computational speed. Because accuracy of the control

trajectory is the last word in optimal control, an “efficient” computational

strategy in the presence of path constraints is to use the Galerkin option

for the dual operating mode. Under this option, the controls converge more

rapidly than the dual variables; hence, the covector outputs of DIDO must be

used as approximations while performing V & V. This mathematical insight

on the mechanics of pseudospectral optimal control theory is due to Q. Gong.

2.8 Avoiding Common Errors # 3

Pontryagin’s Principle is a statement of the necessary conditions for Problem B.

It asserts the existence of certain covector functions. The origin of many com-

mon errors can be traced to overlooking these fundamentals.

1. Necessary, Not Sufficient

A solution to an optimal control problem (B) is also a solution to the boundary

value problem (Bλ). The converse is not necessarily true:

Solution to Problem B
⇒
�

Solution to Problem Bλ

See Section 4.1.3 on page 252 for a demonstration of the insufficiency of Pon-

tryagin’s Principle based on a simple problem. It is very tempting to use the

backward implication and claim optimality, for instance, by solving the BVP.

Fortunately, the forward implication is much easier to use; see Section 2.9.
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2. Bane of Non-unique Existence

Pontryagin’s Principle simply asserts the existence of covector functions; it does

not imply their uniqueness. The non-uniqueness of covectors is not part of

some fine print. It occurs frequently and often goes unrecognized as shown by

the following problem (inspired by the unpublished results of M. Karpenko and

Q. Gong). See also Section 4.9 on page 306.

Study Problem 2.16

The kinematics of a rigid body can be expressed in terms

of Euler parameters or “quaternions” as

q̇ =
1

2
(q4 ω + q × ω)

q̇4 = −1

2
ω · q

where q ∈ R
3 is the Euler vector and q4 is the scalar (com-

ponent of the quaternion). Assuming no running cost,

show that the adjoint covector functions obey the same dy-

namics as the quaternions; i.e.,

λ̇q =
1

2
(λ4 ω + λq × ω)

λ̇4 = −1

2
ω · λq

Consequently, λq · λq + λ2
4 = constant. A useful calculus

for this proof is the rule

∂

∂→x
(
→a ·

(→
b ×→x

))
= →a ×→

b

Discuss the conditions that generate an infinite number

of costate trajectories. (Hint: Consider the transversality

conditions). See also Section 4.9 on page 306.

3. Analyze, Not Solve

An application of Pontryagin’s Principle to Problem B generates a different,

presumably simpler problem (Bλ); see Fig. 2.12 on page 112. Embedded inside
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Problem Bλ is another problem (HMC). At first, it seems reasonable to assume

that the inner problem (HMC) needs to be solved to analyze the outer problem

(Bλ). This is not necessarily true because Problem HMC can be analyzed via

its KKT conditions.

The KKT conditions are necessary conditions; they do not solve Prob-

lem HMC. Fortunately, there is no need to “solve” Problem HMC. Its inclusion

in Theorem 2.1 facilitates an analysis of the the inner and outer problems as a

single unit. Such an analysis is facilitated through an application of DIDO as

illustrated in Fig. 2.16 on page 124.

4. Sufficient, But Unnecessary

Based on the misconception that it is necessary to produce an analytic solution

to Problem HMC, many beginners and some practitioners fall into the trap of

formulating the wrong problem (e.g.,“augmenting”unnecessary cost functions or

performing ruthless linearizations). Recall (see page 122) that problem solving

does not imply analytic solutions. As we gradually move away from the abacus

to a computer, it becomes increasingly clear that is better to solve the correct

problem “approximately” than solve the wrong problem “exactly.” This is why

it is more important to formulate the correct problem than perform unnecessary

simplifications based on the presumed supremacy of analytic solutions. Analytic

solutions may indeed enter in the formulation of the problem of problems as

noted in Chapter 1, but in their proper context, for instance, as part of the

development of the right problem, or as a means to verify and validate (V&V)

a computer code.

5. Chasing Phantoms

Pontryagin’s Principle is a formulation of the necessary conditions for optimal-

ity; consequently, it is an analysis tool, not a problem-solving tool. It can be

correctly used as a necessary condition, that is, to test the optimality of a candi-

date solution regardless of how it is obtained. In Chapter 3, we take the liberty

of using it as a problem-solving tool because it can indeed be used as such on

a very small class of academic-strength problems. In industrial applications,

Pontryagin’s Principle is used at its fundamental level: as a necessary condi-

tion. That is, if a candidate solution fails Pontryagin’s test, it is not an optimal

solution, but an optimal solution must satisfy the necessary conditions.
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Solutions that satisfy Pontryagin’s Principle are called extremals. By defi-

nition, the extremals are feasible but they are not necessarily optimal. Not even

locally optimal. These facts are not a deterrent to generating extremely good

and usable solutions to many problems provided sufficient care and caveats are

used. In many instances, an extremal solution might be fully satisfactory if its

cost is sufficiently low. For example, if the cost of an extremal solution is lower

than the best prevailing solution, it can be crowned the reigning optimal solution

until a better solution is found. See remarks on page 123 in Section 2.5.4.

globally optimal

⇓ �

�
reigning optimallocally optimal

⇓
extremal

⇓
feasible

Figure 2.20: Any extremal that is better than a prevailing solution is a reign-
ing optimal solution. A mathematical proof of local optimality
for an extremal solution requires higher-order conditions (not
discussed in this book).

Sometimes, the claim or demand of global optimality is uninformed; however,

there are many application problems where it is possible to estimate a lower

bound for J [x(·),u(·), tf ] and analyze the optimality of an extremal solution.

That is, suppose we can find an a priori number, J lower, such that

J [x(·),u(·), tf ] ≥ J lower

for all feasible decision variables, (x(·),u(·), tf ). Now let (x#(·),u#(·), t#f ) be

an extremal solution (e.g., one that is successfully computed by DIDO). Then,

based on the difference,

J [x#(·),u#(·), t#f ]− J lower (≥ 0)

any number of practical conclusions can be made:
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1. Is the difference small enough† that it is not economical to find the globally

optimal solution?

2. Is the difference so large that there might be an error in the estimation of

J lower?

3. Is the difference so large that it is worth exploring finding another extremal

solution closer to J lower?

4. Is there a mistake in the problem formulation itself? See Chapter 1, par-

ticularly Fig. 1.50 on page 84.

As an illustrative example of these considerations, let us examine a problem

from astronautics. In space maneuvering, nearly all problems are fundamentally

driven by propellant usage because of the extremely high dollar-cost of launch.

Thus, when the cost functional is propellant, it is easy to write

J lower = 0

In Bedrossian’s celebrated zero propellant maneuvers (ZPMs) implemented on-

board the International Space Station[5], the extremal solutions satisfy

J [x#(·),u#(·), t#f ] = 0

Hence, the triple
(
x#(·),u#(·), t#f

)
is indeed globally optimal. See Fig. 2.21.

In many situations, (provable) global optimality is not necessarily the most

important criterion. A user may be fully satisfied with a feasible solution if its

cost is lower than some targeted value J target. Then, any non-zero difference

J target − J [x#(·),u#(·), t#f ] (≥ 0)

is considered a bonus, and any extremal solution that bests the other is the

reigning optimal solution. For instance, in 2012 (August), the “optimal” pro-

pellant maneuver[7] replaced the ZPM on the Space Station even though it

expended propellant because the time to complete the maneuver was less than

one orbital period, a “soft” requirement that was highly valued by NASA.

†In an industrial environment, it is common to use phrases like “within single digits” for
small or “double-digit improvements in performance” for large.
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2.9 Kalman and the Curse of Sensitivity

In 1964, R. Kalman presented a paper in Yorktown Heights, N.Y., at an IBM

symposium on control[46].‡ Based on the challenges he and others faced in

computing optimal controls, Kalman argued that the problem was “intrinsi-

cally difficult”; hence, he suggested, there must be some underlying fundamen-

tal mathematical principles that could form the basis for a “theory of difficulty.”

Roughly speaking, Kalman contended that any computational method based

on numerically integrating (simulating) differential equations was doomed, and

that the only escape from this eventual disaster was some “newfangled algebra”

that could “algebraize” the dynamics. Based on the somewhat contentious dis-

cussions that ensued at the end of his presentation (as recorded in [46]) and the

subsequent lack of citations to his paper, it is apparent that Kalman’s ideas were

not quite well received. Inspired by Bellman’s curse of dimensionality, we refer

to Kalman’s concept of intrinsic difficulty as the curse of sensitivity. The es-

cape clause on the curse of sensitivity (i.e., the newfangled algebra that Kalman

predicted) is the basis for pseudospectral (PS) optimal control theory [87]. The

curse and its escape are illustrated and introduced in this section. The details

are dispersed over several papers cited in [87].

2.9.1 An Introduction to the Curse of Sensitivity

Consider the following problem:

x ∈ R u ∈ R⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J [x(·), u(·)] = 1

2

∫ tf

t0

u2(t) dt

Subject to ẋ = ax+ bu

x0 = x0

t0 = 0

xf = xf

tf = tf

(2.77)

‡This symposium was attended by a veritable Who’s Who in applied mathematics and
control: One of the presenters at this conference was none other than Pontryagin himself!
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Study Problem 2.17

Show that:

1. The Pontryagin extremal control to the problem de-

fined by Eq. (2.77) is given by

u = −λ b

2. The lower Hamiltonian to Problem 2.77 is given by

H(λ, x) := axλ− b2λ2

2

3. The partials ∂λH and ∂xH produce the right-hand

sides of the primal-dual system given by Eq. (2.78).

Will such a relationship hold for all problems? (Hint:

Examine this for Brac:1.)

4. A particular solution to the primal system (defined in

Eq. (2.78)) is given by

xparticular(t) =
b2λ0

2a
e−at

In a general problem, the key formula, (xf , tf , x0) �→ λ0, as given by Eq. (2.81)

for Problem 2.77, is not known. This is because of the absence of closed-form

solutions to generic nonlinear differential equations; see also page 122 for a dis-

cussion of analytical solutions. Despite this “setback,” it is easy to generate

the map λ0 �→ xf through numerical integration (e.g., a standard Runge-Kutta

procedure; see Fig. 2.23). As a means to understand the consequences of solving

BVPs through a sequence of initial value problems (IVPs), let us assume that

we had to solve Eq. (2.78) iteratively. This BVP is given by

ẋ = ax− b2λ t0 = 0, x(t0) = x0

λ̇ = −aλ tf = tf , x(tf ) = xf
(2.82)

The intuitive, and prima facie logical-sounding shooting algorithm , would

proceed as follows: Guess a value for λ0, say λGuess. Solve the initial value
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Study Problem 2.18

1. If the dynamical system in an optimal control problem has lin-

ear time-varying coefficients, discuss its impact on the curse

of sensitivity. Is it possible to generate a formula similar to

Eq. (2.87) for such a system?

2.
�

If the dynamical system in an optimal control problem is

nonlinear (e.g., given by a generic equation, ẋ = f(x, u, t)),

what is the meaning of the eigenvalue of the system? Can a

connection be made to the Lipschitz constant? See [92].

3.
�

Does an infinite horizon problem have infinite sensitivity?

�
Study Problem 2.19

Explain how the non-uniqueness of the costates (refer

back to Section 2.8) impacts a procedure for solving the

BVP (Problem Bλ).

��
Study Problem 2.20

Critique the argument that geometric or symplectic in-

tegration can provide an escape from the curse of sen-

sitivity.

2.9.2
��

Escaping the Curse of Sensitivity

The shortcomings of the shooting method have been observed since the early

1960s. In 1962, Morrison et al[72] wrote,

[As] happens altogether too often, the differential equations are so

unstable that they “blow up” before the initial value problem can be

completely integrated. This can occur even in the face of extremely

accurate guesses for the initial values.
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It is now apparent that this observation is a direct consequence of Eq. (2.87).

The eigenvalues of a dynamical system are intrinsic; hence, we cannot change

the quantity a in formula Eq. (2.87). The only variable is tf . Based on this

observation, Morrison et al[72] proposed a multiple shooting method . The

concept involves dividing the time interval [t0, tf ] := [0, tf ] into M smaller

intervals so that the |a| tf is locally small:

0 1 2 · · · M

t0 = 0 < tf1 < tf2 < · · · < tfM = tf

Because the local initial and final-time conditions are unknown, the concept

requires an enforcement of continuity conditions:

x(t0) = 0 · · · x(tf−2 ) = x(tf+2 ) · · · · · · x(tfM ) = xf

λ(t0) = λguess
0 · · · λ(tf−2 ) = λ(tf+2 ) · · · · · · λ(tfM ) = N/A

These conditions form the basis for concatenating local shooting elements where

sensitivity is reduced as a consequence of shorter horizons.

Observe that each shooting element in a multiple shooting method involves

discretization (via integration):

0 1 2 · · · M

� � �

integration steps

Thus, the multiple shooting element may be re-framed as a procedure that

involves a “micro-discretization” at the element level coupled with a “macro-

discretization” of the elements themselves. Therefore, it stands to reason that

if shooting were done at the micro-discretization level, the result would be the

greatest reduction in sensitivity coupled with simplifications resulting from the

elimination of the macro-discretizations. This concept is the basis of colloca-

tion methods.
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the 1960s is because of the absence of the requisite computer memory available

at that time. To appreciate this limitation, observe that a problem with Nx

variables and N points requires the manipulation of NxN variables that may

involve matrices of NxN×NxN dimensions. Ignoring sparsity, a simple problem

with Nx = 6 and N = 1000 requires about 62 × (1000)2 × 8 Bytes or about 275

MB of memory — a number that seemed inconceivable in the 1960s. If we limit

N to 100 or less, then, the memory requirements reduce to less than 3 MB, a

more realistic number for a high-end computer of that era. Taking step sizes in

Runge-Kutta methods with N ≤ 100 generally produces low accuracy; hence,

these methods got branded (incorrectly) as low-accuracy methods.

Study Problem 2.22

Estimate the computer memory required to solve an opti-

mal control problem by a multiple shooting method. Based

on this estimate, discuss the scale (i.e., numerical value of

Nx) of problems that can be solved in a present-day com-

puter under the absence of the curse of sensitivity.

Using the number N2
x ×N2 as the basis of computational memory require-

ments it is apparent that a curse-free method is limited by the scale of the prob-

lem (Nx) for a prescribed accuracy (determined inversely by N). A low value of

N implies low accuracy. Although computational capacities in the 1990s were

substantially larger than those of the 1960s, collocation methods were viewed

with suspicion because the practice of these methods necessitated a choice of

N that was frequently low for reasonable accuracy. That is, the problems that

were actually being solved were too far to the right in Fig. 2.27. As a result, the

reigning idea in the 1990s was to use the low-accuracy solution of collocation

methods as a seed for a shooting method on the presumption that a good guess

would alleviate the curse of sensitivity (i.e., almost ignoring Eq. (2.87)). Direct

collocation methods were viewed with even greater suspicion because there was

no connection between the computed solution and Pontryagin’s Principle. The

wide gap between theory and practice opened the door for an increasingly large

collection of ad hoc methods that further fueled the folklore that optimal control

problems were just hard. A turning point occurred around the year 2000 through

the introduction of pseudospectral (PS) optimal control theory [87].
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The theory of PS optimal control is based on functional analysis. It is a

“third” concept that is separate from either Pontryagin’s or Bellman’s. The ap-

proach is theoretically founded on the classical Stone–Weierstrass theorem

and practically implemented by a “sufficiently high” order polynomial represen-

tation of a function in much the same way as other elementary functions (like

sines, cosines, exponentials, etc.) are implemented through polynomial repre-

sentations. By cutting the “middle man” out (i.e., polynomials masquerading as

sines, cosines, etc.) PS optimal control theory directly seeks designer func-

tions that solve Problem B. As a result, it fundamentally intertwines theory

with computation. This is why it is sometimes confused as a pure computational

method, albeit it did start out as such.

PS optimal control is founded on two fundamental notions:

• The idea of using a solution-centric framework that uses the differential

and other constraints to shape the solution instead of “solving” the equa-

tions; and,

• The exploitation of the connection between the covectors of Problems B

and BN — a concept known as the Covector Mapping Principle

(CMP).

In a spectral method, the state trajectory x(·) is expressed as an infinite series

expansion

x(t) =

∞∑
m=0

amPm(t) (2.88)

where Pm(t) is a polynomial in t of degree m. The justification for expressing

x(·) in terms of an infinite degree polynomial stems from the fact that the state

trajectory is absolutely continuous over the finite horizon; hence the Stone–

Weierstrass theorem guarantees the existence of Eq. (2.88). Note also that

elementary functions (sines, cosines, logs, exponentials, etc.) are also often

expressed or computed through polynomial expansions. Hence, we may view

elementary functions as shorthand notations for a special set of polynomials.

From this perspective, Eq. (2.88) seeks to express the solution to an optimal

control problem through a“designer set” of polynomials by cutting out the

“middle man” (of elementary functions).
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Note that Eq. (2.88) has the “look and feel” of a Fourier series expansion.

This is not an accident! Equation (2.88) is indeed a generalized Fourier

expansion with “amplitude” am and “frequency” Pm(t). Typical choices for

the frequency basis functions (Pm(t)) are the “big two” orthogonal polynomials:

Legendre and Chebyshev .

A key principle in a PS approach is that the coefficients am, called the

spectral coefficients, are computed indirectly by transforming Eq. (2.88) to an

equivalent form

x(t) =
∞∑
j=0

bjφj(t) (2.89)

where tj , j = 0, 1, 2, . . . are discrete points in time called nodes and φj(t) is a

Lagrange interpolating polynomial that satisfies the Kronecker relationship:

φj(tk) = δjk (2.90)

Satisfaction of the Kronecker relationship implies that

x(tk) =

∞∑
j=0

bjφj(tk) = bk (2.91)

That is, the coefficient bj in Eq. (2.89) is the value of x(t) at t = tj . It is this

sampling property , which is absent in Eq. (2.88), that makes a PS approach

distinct from the direct use of Eq. (2.88). As a result, we can now rewrite

Eq. (2.89) using a more evocative notation:

x(t) =

∞∑
j=0

xjφj(t) (2.92)

Equation (2.92) is called a nodal representation of x(·) to distinguish it from

its equivalent modal representation given by Eq. (2.88).

Using the same arguments, we write

λ(t) =

∞∑
j=0

λjφj(t) (2.93)
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2.9 Kalman and the Curse of Sensitivity 163

Lastly, although it may seem logical to write the control function in the same

way, that is, u(t) =
∑∞

j=0 ujφj(t), it turns out that this is not necessary and is

potentially very limiting in applicability. The optimal control is expressed as

u(t) =

∞∑
j=0

ujψj(t) (2.94)

where ψj(t) is a special interpolating function (not necessarily Lagrange) that

makes the pair t �→ (x,u) dynamically feasible. This aspect of ψj has inspired

an alternative PS method known as the Bellman pseudospectral method [84,

86]. The Bellman PS method facilitates real-time optimal control (RTOC)

through the use of pseudospectral theory.

Using these elementary ideas, in addition to some newfangled algebra as

Kalman predicted, it can be shown that PS optimal controls can be generated

to very high accuracy (e.g., 10−6) with fairly low N (e.g., N ≤ 100). For

instance, the accuracy achievable with a Runge-Kutta method for NRK ∼ 1000

can typically be obtained with an order of magnitude fewer points (NPS ∼ 100)

using a spectral method. (See Section 3.2.4 on page 187 for a quantitative

discussion with regard to the Brachistochrone problem.) Thus, for instance, a

six-dimensional problem (i.e., Nx = 6) can be solved to high accuracy with less

than 3 MB of computer memory — a feat that could have been achieved in the

1960s (see page 160).

One of the most powerful features of PS optimal control theory is that coef-

ficients of the finite expansion adjoint covector function

λN (t) =

N∑
j=0

λN
j φj(t) (2.95)

and other covectors that arise in optimal control transform linearly to the cov-

ectors of the finite Problem BN . This implies that Pontryagin’s Principle and

computation are fundamentally connected in much the same way as Bellman’s

Principle is connected to the adjoint covectors through the gradient of the

value function.This connectivity is called the Covector Mapping Principle

(CMP); see Fig. 2.28. The CMP removes the suspicions (of the 1990s) of com-

puted solutions by intimately connecting the results to Pontryagin’s Principle.
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first

H(λ,x, t) := min
u∈U

H(λ,x,u, t)

and differentiate afterward

−λ̇ =
∂H
∂x

As evident from the problems and examples discussed in the preceding pages,

this procedure (∂xH = ∂x (minu H)) is considerably painful or impossible to

perform as H is, quite often, not differentiable even when H is very smooth.

Study Problem 2.23

Pick any recent journal or conference paper on optimal

control. Critique it using the concepts developed in this

chapter, and particularly, this section.

2.10 Pontryagin and the Calculus of Variations¶

Today, Problem B may seem quite a natural way to formulate many prob-

lems in disparate fields. Prior to 1955, the language of optimal control did

not exist: It was invented by Pontryagin and his students[33, 66]. Obviously,

without a language, optimal control problems went unrecognized in many fields.

Such problems — the domain of an extremely small group of specialists[66] —

had to be formulated using the old (i.e., non-control) language of the “calculus

of variations.” The calculus of variations — a term coined by Leonhard Eu-

ler (1707–1783) — was invented by Joseph-Louis Lagrange (1736–1813) when

he was only 19 years old! Prior to Lagrange’s invention, Euler (Bernoulli’s stu-

dent) had formulated the first general problem of a “new calculus,” which can

be formally stated (in modern notation) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Minimize J [x(·), tf ] =

∫ tf

t0

L(x(t), ẋ(t), t) dt

Subject to x(t0) = x0

e(xf , tf ) = 0

(2.96)

¶This section may be skipped without loss of continuity, but why skip a good story?
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166 Chapter 2. Pontryagin’s Principle

Note that there is no concept of a control function in Problem 2.96, although

ẋ(t) is treated somewhat independently of x(t). Ignoring the possible confusions

arising from the meaning of such problems, an optimal control problem, prior to

Pontryagin, had to be “fitted” inside of Problem 2.96. (Try this as an exercise!)

Euler derived the first necessary condition for Problem 2.96 as

d

dt

∂L(x(t), ẋ(t), t)

∂ẋ
− ∂L(x(t), ẋ(t), t)

∂x
= 0 (2.97)

He derived this condition through a process of discretization and limit taking[69,

95] — see bottom part of Fig. 2.28 on page 164 — obviously well before the

advent of computers (which also reminds us that discretization and limit taking

are independent of computation and computers). Lagrange derived the same

condition using his invention of “variations.” Euler was so impressed by this

idea that he abandoned his own and branded the new calculus as the calculus of

variations[95]; this is why Eq. (2.97) is called the Euler-Lagrange equation .

In the decades and centuries that followed, Problem 2.96 drew the attention of

some of the greatest mathematicians. Legendre, Weierstrass, Jacobi and many

others derived additional necessary conditions that bear their names. In the

early 20th century (1930s), the hub of this activity was at the University of

Chicago[66, 74, 95].

In the 1950s, aerospace engineers were facing a number of problems in opti-

mal control (when the term did not even exist) and the closest available tool at

that time was the calculus of variations[33]. Even if they were successful in force-

fitting their problems inside the language of the calculus of variations, they had

to subsequently wade through a fog of arcane necessary conditions and a large

number of theorems to pull out something useful. As McShane notes, mastery of

this subject gave answers to questions no one was asking[66]. In sharp contrast,

Pontryagin — a well-known topologist at that time — completely abandoned

his field to answer engineering questions that arose in the 1950s[33].

In the Spring of 1955 two (Russian) Air Force Colonels visited Pontryagin

at the Steklov Mathematical Institute and posed a problem on time-optimal

aircraft maneuvers[33]. Pontryagin recognized that this problem, and many

other emerging ones at that time, required a new calculus. This new calculus

of optimal control, developed by Boltyanski, Gamkrelidze and Pontryagin[27,

74, 75], not only generalized the old one but unified, simplified and extended
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2.10 Pontryagin and the Calculus of Variations 167

it in a way that engineers could quickly apply and use the results to develop

insights into the problems they were facing in the 1950s. Among many, one of the

fundamental shifts was the introduction of the state-space model, ẋ = f(x,u, t),

as a constraint in a dynamic optimization problem. This “simple” perspective

changed everything! For instance, Problem (2.96) can be formulated in this

“new language” as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J [x(·),u(·), tf ] =
∫ tf

t0

L(x(t),u(t), t) dt

Subject to x(t0) = x0

ẋ(t) = u(t)

e(xf , tf ) = 0

(2.98)

What is more remarkable about this new perspective is that through the in-

troduction of Pontryagin’s Hamiltonian, the awkward Euler-Lagrange equation

given by Eq. (2.97) transforms to the very elegant dual form given by

∂H

∂u
= 0 (2.99)

The price for this elegance is, of course, the introduction of covectors as a

fundamental analysis tool. Equation (2.99) is equivalent to, but is not the same

as, the Euler-Lagrange equation. Equation (2.99) follows from Problem HMC,

but under three severe conditions:

1. The control space U must be continuous (see Fig. 2.2 on page 87),

2. The H-function must be differentiable with respect to u, and

3. The optimal control must be interior to U.

In Chapter V of [75], Pontryagin et al derived the Euler-Lagrange equation

and all the other necessary conditions of the calculus of variations using their

new simpler tools while simultaneously showing the limitations of the former.

Despite this, many in the mathematical community were reluctant to accept

their results as something completely new[1]. On the other hand, engineers

wholeheartedly accepted and endorsed the new ideas[1, 66] because they were

practical and systematic: There was no longer a need to understand or apply

the chaos of limitless theorems of the calculus of variations. Not to be beaten,
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168 Chapter 2. Pontryagin’s Principle

the traditionalists reorganized the calculus of variations using Pontryagin’s new

ideas and “showed”that the Hamiltonian minimization condition was “merely”a

generalization of Weierstrass’ condition. Using similar rewrites, it can be shown

that
∂2H

∂u2
≥ 0 (2.100)

is a restatement of the Legendre-Clebsch condition . Hence, the argument

went, it was “obvious” from equations (2.99) and (2.100) that the Hamiltonian

must be minimized. This gave credibility to those educators who chose to inflict

the classical calculus of variations upon unsuspecting students. A genuine new

calculus blending the old with the new had to wait until Clarke’s breakthrough

of nonsmooth calculus[20, 23].

In 1989, McShane warned[66] that mathematicians had not learned from

the history of the 1950s. New “baroque theorems,” he criticized, were being

generated of “increasing intricacy [that is] of interest to a steadily shrinking

collection of experts in the subject.” Even worse, theory and computation got

completely divorced in the 1990s, leading to such notions as “direct” methods

(apparently not based on theory) and “indirect” methods (apparently based on

Pontryagin’s Principle). See Section 2.9.2 on page 157 and [77] on the origins

of this “divorce,” and Section 3.7 on page 240 for a counter example. A turning

point occurred around the year 2000 when the Covector Mapping Principle

was introduced[87]. In one fell swoop, Pontryagin’s theory, computation and

problem-solving became fundamentally intertwined; see Fig. 1.50 on page 84.

In 2006, SIAM News heralded the dawn of a new era: Pseudospectral optimal

control theory had debuted flight.

2.11 Endnotes

Pontryagin’s Principle is named in honor of Lev S. Pontryagin (1908–1988), who,

along with his associates at the Steklov Institute of Mathematics, Moscow, was

the first (1956) to articulate all major elements of this fundamental concept[1].

Barring a footnote on page 45 in [75] where they refer to covariant vectors,

Pontryagin et al never used the word covector in their entire book; however,

they were absolutely clear everywhere — through their tensor notation — that

their “auxiliary variables” (i.e., covectors in this book) were indeed covariant.

The word covector also means a covariant vector.
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After Pontryagin, many applied textbooks introduced these covectors as La-

grange multipliers — a name change that does little to unlock their mystery.‖ In

the mathematics literature, Pontryagin’s auxiliary variables were indeed identi-

fied as covectors but in their abstract form as linear functionals. The mystery

and suspicion of Lagrange multipliers, their apparent lack of physical meaning

funneled through the curse of sensitivity fueled the folklore that optimal control

problems were hard. They indeed were! But everything changed around the

year 2000 when the escape clause on the curse of sensitivity was thoroughly

exploited. See [84] for historical and technical details.

The concept of covectors, as presented in Sections 2.2 and 2.3, grew as

an outgrowth of the scaling and balancing procedure used in DIDO when the

software was first created in 2001. Subsequent experience with DIDO helped

codify a re-interpretation of covectors as presented in this chapter. Interestingly,

the physical interpretation of covectors presented in this chapter is more closely

aligned with Pontryagin’s original geometric view of the calculus of optimal

control. The presentation in Section 2.2, particularly the bottom of Fig. 2.5,

was inspired by the combination of Pontryagin’s geometric insight on duality

and the classic interpretation of covectors in physics as presented by Misner,

Thorne and Wheeler[68].

Our treatment of covectors is in sharp contrast to their tricky introduction

as Lagrange multipliers presented in many textbooks on applied optimal con-

trol where there is a frequent lamentation that the multipliers have no physical

meaning. Having dispensed with this myth, the measuring and scaling proce-

dure offered by the covectors can be used very effectively to solve many optimal

control problems in DIDO. This implies that a practical understanding of Pon-

tryagin’s Principle is more important than ever before. Simply running a code

does little in understanding Pontryagin’s Principle or the problem being solved.

That is, to solve a “hard” optimal control problem“easily,” it is critical to apply

Pontryagin’s Principle in a manner that exploits the problem-specific covectors

using the “new rules” and insights presented in this chapter. Simple examples

illustrating part of this methodical procedure are presented in Chapter 3 with

additional problems and insights in Chapter 4. For application problems, such

as some of those presented in Chapter 4, Pontryagin’s Principle must be applied

‖Lagrange multipliers were actually invented by Euler as part of his quest to solve Queen
Dido’s problem[23, 96]: See Section 4.6 on page 282 for a discussion on this problem and [96]
for a well-researched historical account.
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170 Chapter 2. Pontryagin’s Principle

as indicated in Fig. 2.16, page 124. This is why a pragmatic understanding of

Pontryagin’s Principle is essential to producing good DIDO application codes.

In other words, theory is not divorced from computation! More importantly,

we now have an intimate connection between theory, computation and problem

formulation itself!! Solutions from an initial problem formulation feed new prob-

lem formulations. This is part of the problem of problems concept (described in

Chapter 1) where the DIDO solutions from a given problem are analyzed and

used to reformulate the problem repeatedly until the correct problem is formu-

lated; see the work flow outlined in Fig. 1.50 on page 84. Welcome to a journey

of discovery!
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