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Summary. We consider nonlinear optimal control problems with mixed state-
control constraints. A discretization of the Bolza problem by a Legendre pseudospec-
tral method is considered. It is shown that the operations of discretization and dual-
ization are not commutative. A set of Closure Conditions are introduced to commute
these operations. An immediate consequence of this is a Covector Mapping Theorem
(CMT) that provides an order-preserving transformation of the Lagrange multipli-
ers associated with the discretized problem to the discrete covectors associated with
the optimal control problem. A natural consequence of the CMT is that for pure
state-constrained problems, the dual variables can be easily related to the D-form of
the Lagrangian of the Hamiltonian. We demonstrate the practical advantage of our
results by numerically solving a state-constrained optimal control problem without
deriving the necessary conditions. The costates obtained by an application of our
CMT show excellent agreement with the exact analytical solution.

1 Introduction

Many problems in control theory can be formulated as optimal control prob-
lems [5]. From a control engineer’s perspective, it is highly desirable to obtain
feedback solutions to complex nonlinear optimal control problems. Although
the Hamilton-Jacobi-Bellman (HJB) equations provide a framework for this
task, they suffer from well-known fundamental problems [1, 3, 5], such as the
nonsmoothness of the value function and the “curse of dimensionality”. The
alternative framework of the Minimum Principle, while more tractable from
a control-theoretic point of view, generates open-loop controls if it can be
solved at all. The Minimum-Principle approach is also beset with fundamen-
tal numerical problems due to the fact that the costates are adjoint to the
state perturbation equations [3]. In other words, the Hamiltonian generates
a numerically sensitive boundary value problem that may produce such wild
trajectories as to exceed the numerical range of the computer [3]. To overcome
this difficulty, direct methods have been employed to solve complex optimal
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control problems arising in engineering applications [2]. While the theoretical
properties of Eulerian methods are widely studied [5, 12], they are not practi-
cal due to their linear (O(h)) convergence rate. On the other hand, collocation
methods are practical and widely used [2], but not much can be said about
the optimality of the result since these methods do not tie the resulting so-
lutions to either the Minimum Principle or HJB theory. In fact, the popular
Hermite-Simpson collocation method and even some Runge-Kutta methods
do not converge to the solution of the optimal control problem [10]. This is be-
cause an N th-order integration scheme for the differential equations does not
necessarily lead to an N th-order approximation scheme for the dual variables.
That is, discretization and dualization do not necessarily commute [14]. By
imposing additional conditions on the coefficients of Runge-Kutta schemes,
Hager[10] was able to transform the adjoint system of the discretized problem
to prove the preservation of the order of approximation. Despite this break-
through, the controls in such methods converge more slowly than the states
or the adjoints. This is because, the controls are implicitly approximated to
a lower order of accuracy (typically piecewise linear functions) in the discrete
time interval.

In this paper, we consider the pseudospectral (PS) discretization of con-
strained nonlinear optimal control problems with a Bolza cost functional[6, 8,
9]. PS methods differ from many of the traditional discretization methods in
the sense that the focus of the approximation is on the tangent bundle than
on the differential equation[15]. In this sense, they most closely resemble finite
element methods but offer a far more impressive convergence rate known as
spectral accuracy[17]. For example, for smooth problems, spectral accuracy
implies an exponential convergence rate. We show that the discretization of
the constrained Bolza problem by an N th-order Legendre PS method does
not lead to an N th-order approximation scheme for the dual variables as pre-
viously presumed[7, 9]. However, unlike Hager’s Runge-Kutta methods, no
conditions on the coefficients of the Legendre polynomials can be imposed to
overcome this barrier. Fortunately, a set of simple “closure conditions,” that
we introduce in this paper, can be imposed on the discrete primal-dual vari-
ables so that a linear diagonal transformation of the constrained Lagrange
multipliers of the discrete problem provides a consistent approximation to the
discrete covectors of the Bolza problem. This is the Covector Mapping Theo-
rem (CMT). For pure state-constrained control problems, the CMT naturally
provides a discrete approximation to the costates associated with the so-called
D-form of the Lagrangian of the Hamiltonian[11]. This implies that the or-
der of the state-constraint is not a limiting factor and that the interior point
constraint at the junction of the state constraint is not explicitly imposed.
More importantly, the jump conditions are automatically approximated as a
consequence of the CMT. These sets of results offer an enormously practical
advantage over other methods and are demonstrated by a numerical example.
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2 Problem Formulation

We consider the following formulation of an autonomous, mixed state-control
constrained Bolza optimal control problem with possibly free initial and ter-
minal times:

Problem B

Determine the state-control function pair, [τ0, τf ] � τ �→ {x ∈ R
Nx ,u ∈

R
Nu} and possibly the “clock times,” τ0 and τf , that minimize the Bolza cost

functional,

J [x(·),u(·), τ0, τf ] = E(x(τ0),x(τf ), τ0, τf ) +
∫ τf

τ0

F (x(τ),u(τ)) dτ (1)

subject to the state dynamics,

ẋ(τ) = f(x(τ),u(τ)) (2)

end-point conditions,

e
(
x(τ0),x(τf ), τ0, τf

)
= 0 (3)

and mixed state-control path constraints,

h(x(τ),u(τ)) ≤ 0 (4)

Assumptions and Notation

For the purpose of brevity, we will make some assumptions that are often
not necessary in a more abstract setting. It is assumed the functions E :
R

Nx×R
Nx×R×R → R, F : R

Nx×R
Nu → R, f : R

Nx×R
Nu → R

Nx , e : R
Nx×

R
Nx×R×R → R

Ne , h : R
Nx×R

Nu → R
Nh are continuously differentiable with

respect to their arguments. It is assumed that a feasible solution, and hence an
optimal solution exists in an appropriate Sobolev space, the details of which
are ignored. In order to apply the first-order optimality conditions, additional
assumptions on the constraint set are necessary. Throughout the rest of the
paper, such constraint qualifications are implicitly assumed. The Lagrange
multipliers discussed in the rest of this paper are all assumed to be nontrivial
and regular. The symbol N(·) with a defining subscript is an element of the
Natural numbers N. Nonnegative orthants are denoted by R

Nh
+ . The shorthand

h[τ ] denotes h(x(τ),u(τ)). By a somewhat minor abuse of notation, we let hk

denote hN [τk] = h(xN (τk),uN (τk)) where the superscript N denotes the N th

degree approximation of the relevant variables. The same notation holds for
all other variables. Covectors are denoted by column vectors than row vectors
to conform with the notion of a gradient as a column vector.

Under suitable constraint qualifications[11], the Minimum Principle iso-
lates possible optimal solutions to Problem B by a search for vector-covector
pairs in the primal-dual space. Denoting this as Problem Bλ, it is defined as:
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Problem Bλ

Determine the state-control-covector function 4-tuple, [τ0, τf ] � τ �→ {x ∈
R

Nx ,u ∈ R
Nu , λ ∈ R

Nx ,µ ∈ R
Nh
+ }, a covector ν ∈ R

Ne , and the clock times
τ0 and τf that satisfy Eqs.(2)-(4) in addition to the following conditions:

λ̇(τ) = −∂L[τ ]
∂x

(5)

∂L

∂u
= 0 (6)

{λ(τ0),λ(τf )} =
{
− ∂Ee

∂x(τ0)
,

∂Ee

∂x(τf )

}
(7)

{H[τ0],H[τf ]} =
{

∂Ee

∂τ0
,−∂Ee

∂τf

}
(8)

where L is the D-form of the Lagrangian of the Hamiltonian defined as[11],

L(x,u,λ,µ) = H(x,u,λ) + µT h(x,u) (9)

where H is the (unminimized) Hamiltonian,

H(x,u,λ) = λT f(x,u) + F (x,u) (10)

and µ ∈ R
Nh
+ satisfies the complementarity condition,

µT (τ)h[τ ] = 0 ∀τ ∈ [τ0, τf ] (11)

In the above equations, Ee is defined as

Ee(x(τ0),x(τf ), τ0, τf ,ν) = E(x(τf ),x(τ0), τ0, τf ) + νT e(x(τ0),x(τf ), τ0, τf )
(12)

If the path constraint, Eq.(4), is independent of the control (i.e. a pure
state constraint), then the costate, λ(τ), must satisfy the jump condition[11],

λ−(τe) = λ+(τe) +
(

∂h
∂x(τe)

)T

η (13)

where η ∈ R
Nh is a (constant) covector which effectively arises as a result of

the implied interior point constraint (with a pure state constraint),

h(x(τe)) = 0 (14)

where τe denotes the entry or exit point of the trajectory. The important
point to note about the jump condition, Eq.(13), is that it is derived by
explicitly imposing the constraint, Eq.(14). This is important from a control-
theoretic point of view but as will be apparent from the results to follow in the
Legendre pseudospectral method, it is not necessary to explicitly impose this
constraint. In fact, the method automatically determines an approximation to
the covector jump as part of the solution.
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3 The Legendre Pseudospectral Method

The Legendre pseudospectral method is based on interpolating functions on
Legendre-Gauss-Lobatto (LGL) quadrature nodes[4]. These points which are
distributed over the interval [−1, 1] are given by t0 = −1, tN = 1, and for
1 ≤ l ≤ N−1, tl are the zeros of L̇N , the derivative of the Legendre polynomial
of degree N, LN . Using the affine transformation,

τ(t) =
(τf − τ0)t + (τf + τ0)

2
(15)

that shifts the LGL nodes from the computational domain t ∈ [−1, 1] to the
physical domain τ ∈ [τ0, τf ], the state and control functions are approximated
by Nth degree polynomials of the form

x(τ(t)) ≈ xN (τ(t)) =
N∑

l=0

xlφl(t) (16)

u(τ(t)) ≈ uN (τ(t)) =
N∑

l=0

ulφl(t) (17)

where, for l = 0, 1, . . . , N

φl(t) =
1

N(N + 1)LN (tl)
(t2 − 1)L̇N (t)

t − tl

are the Lagrange interpolating polynomials of order N . It can be verified that,

φl(tk) = δlk =
{

1 if l = k
0 if l �= k

Hence, it follows that xl = xN (τl), ul = uN (τl) where τl = τ(tl) so that
τN ≡ τf . Next, differentiating Eq. (16) and evaluating it at the node points,
tk, results in

ẋN (τk) =
dxN

dτ

∣∣∣
τ=τk

=
dxN

dt

dt

dτ

∣∣∣
tk

=
2

τf − τ0

N∑
l=0

Dklxl ≡ 2
τf − τ0

dk (18)

where Dkl = φ̇l(tk) are entries of the (N + 1)× (N + 1) differentiation matrix
D [4]

D := [Dkl] :=



LN (tk)
LN (tl)

. 1
tk−tl

k �= l

−N(N+1)
4 k = l = 0

N(N+1)
4 k = l = N

0 otherwise

(19)
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This facilitates the approximation of the state dynamics to the following al-
gebraic equations

τf − τ0

2
f(xk,uk) −

N∑
l=0

Dklxl = 0 k = 0, . . . , N

Approximating the Bolza cost function, Eq.(1), by the Gauss-Lobatto inte-
gration rule, we get,

J [XN ,UN , τ0, τf ] = E(x0,xN , τ0, τf ) +
τf − τ0

2

N∑
k=0

F (xk,uk)wk

where
XN = [x0;x1; . . . ;xN ], UN = [u0;u1; . . . ;uN ]

and wk are the LGL weights given by

wk :=
2

N(N + 1)
1

[LN (tk)]2
, k = 0, 1, . . . , N

Thus, Problem B is discretized by the following nonlinear programming (NLP)
problem:

Problem BN

Find the (N+1)(Nx+Nu)+2 vector XNP = (XN ;UN ; τ0, τf ) that minimizes

J(XNP ) ≡ JN = E(x0,xN , τ0, τf ) +
τf − τ0

2

N∑
k=0

F (xk,uk)wk (20)

subject to

τf − τ0

2
f(xk,uk) −

N∑
l=0

Dklxl = 0 (21)

e(x0,xN , τ0, τf ) = 0 (22)
h(xk,uk) ≤ 0 (23)

for k = 0, . . . , N.
Problem Bλ can also be discretized in much the same manner. Approxi-

mating the costate by the N th degree polynomial,

λ(τ(t)) ≈ λN (τ(t)) =
N∑

l=0

λlφl(t) (24)

and letting ΛNP = [λ0;λ1; . . . ;λN ;µ0;µ1; . . . ;µN ;ν0;νf ], we can discretize
Problem Bλ as,
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Problem BλN

Find XNP and ΛNP that satisfy Eqs.(21)-(23) in addition to the following
nonlinear algebraic relations:

N∑
l=0

Dklλl = −∂Lk

∂xk
(25)

∂Lk

∂uk
= 0 (26)

{λ0,λN} =
{
−∂Ee

∂x0
,

∂Ee

∂xN

}
(27)

{H0,HN} =
{

∂Ee

∂τ0
,−∂Ee

∂τN

}
(28)

µT
k hk = 0, µk ≥ 0 (29)

for k = 0, . . . , N.

Remark 1. In the case of pure state constraints, it is necessary to determine
a priori a switching structure and impose the jump conditions for optimality.
Assuming a sufficiently large N , the jump condition can be approximated as,

λ(te) = λ(te+1) +
(

∂h(xe)
∂xe

)T

η (30)

for all points te that are the junction points of the switching structure. This
is the indirect Legendre pseudospectral method[8] and represents a discretiza-
tion of the multi-point boundary value problem. It is obvious that the direct
method (Problem BN ) is far simpler to implement than the indirect method.
This is true of any direct/indirect method[2]. However, unlike the indirect
method, not much can be said about the optimality or the convergence of the
direct method. The theorem of the next section shows how to get the high
performance of the indirect method without actually implementing it by way
of the significantly simpler implementation of the direct method.

3.1 KKT Conditions for Problem BN

The Lagrangian for Problem BN , can be written as

J
N

(XNP , ν̃, λ̃, µ̃) = JN (XNP ) + ν̃T e(x0,xN , τ0, τf )+
N∑

i=0

(
λ̃

T

i {(
τf − τ0

2
)fi(XNP ) − di(XN )} + µ̃T

i hi(XNP )
)

(31)

where ν̃, λ̃i, µ̃i are the KKT multipliers associated with the NLP. Using
Lemma 1 below, the KKT conditions may be written quite succinctly in a
certain form described later in this section.
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Lemma 1. The elements of the Differentiation Matrix, Dik, and the LGL
weights, wi, together satisfy the following properties,

wiDik + wkDki = 0 i, k = 1, . . . , N − 1 (32)

For the boundary terms, we have 2w0D00 = −1, and 2wNDNN = 1. Further,∑N
i=0 wi = 2.

For a proof of this, please see [9].

Lemma 2. The LGL-weight-normalized multipliers λ̃k

wk
,
µ̃k

wk
satisfy the same

equations as the discrete costates (Cf. Eq.(25)) at the interior nodes, k =
1, . . . N − 1; i.e., we have

∂L

∂xk
(xk,uk,

λ̃k

wk
,
µ̃k

wk
) +

N∑
i=0

Dki

(
λ̃i

wi

)
= 0 (33)

Proof: Consider the interior state variables (x1, . . . xN−1). From applying the
KKT condition at the interior nodes to Eq.(31), i.e. ∂J

N

∂xk
= 0, we have

∂

∂xk

[
N∑

i=0

λ̃
T

i

[τf − τ0

2
fi − di

]
+ µ̃T

i hi

]
= −∂JN

∂xk
(34)

Since the functions f ,h, F are evaluated only at the points ti, we have

∂

∂xk

[
N∑

i=0

λ̃
T

i

(
τf − τ0

2
fi

)
+ µ̃T

i hi +
τf − τ0

2
Fiwi

]
=

τf − τ0

2

(
∂fk
∂xk

)T

λ̃k +

τf − τ0

2
∂Fk

∂xk
wk +

(
∂hk

∂xk

)T

µ̃k (35)

For the term involving the state derivatives, a more complicated expression is
obtained since the differentiation matrix D relates the different components
of xk :

∂

∂xk

[
N∑

i=0

λ̃
T

i di

]
=

N∑
i=0

Dikλ̃i (36)

From Lemma 1, Dik = −wk

wi
Dki, therefore by putting together Eqs. (35)-(36),

the following is obtained for k = 1, . . . , N − 1 :

τf − τ0

2
∂Fk

∂xk
wk +

τf − τ0

2

(
∂fk
∂xk

)T

λ̃k +wk

N∑
i=0

Dki

(
λ̃i

wi

)
+

(
∂hk

∂xk

)T

µ̃k = 0

(37)
Dividing Eq. (37) by wk yields the desired result for k = 1, . . . , N − 1. �
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Lemma 3. The LGL-weight-normalized multipliers λ̃k

wk
,
µ̃k

wk
satisfy the dis-

crete first-order optimality condition associated with the minimization of the
Hamiltonian at all node points:

∂L

∂uk
(xk,uk,

λ̃k

wk
,
µ̃k

wk
) = 0 (38)

Proof: Considering the terms that involve differentiation with respect to
the control variables uk in Eq. (31) yields(

τf − τ0

2
∂fk
∂uk

)T

λ̃k +
(

∂hk

∂uk

)T

µ̃k = −∂JN

∂uk
k = 0, . . . , N. (39)

Since
∂JN

∂uk
=

(
τf − τ0

2

)
∂Fk

∂uk
wk (40)

dividing Eq.(39) by wk, yields the desired result. �

Lemma 4. At the final node, the KKT multipliers satisfy the following equa-
tion:

wN

(
∂L

∂xN
(xN ,uN ,

λ̃N

wN
,
µ̃N

wN
) +

N∑
i=0

DNi
λ̃i

wi

)
≡ cN (41)

λ̃N

wN
− ∂Ẽe

∂xN
≡ cN (42)

where Ẽe = Ee(x0,xN , τ0, τN , ν̃)

Proof: The following KKT condition holds for the last node:

(
∂e

∂xN

)T

ν̃ +
τf − τ0

2

(
∂fN
∂xN

)T

λ̃N −
N∑

i=0

DiN λ̃i +
(

∂hN

∂xN

)T

µ̃N = −∂JN

∂xN

(43)
Using the relationship

DiN = −wN

wi
DNi, i �= N and 2DNN =

1
wN

and adding 2DNN λ̃N = λ̃N

wN
to both sides of Eqn (43) and rearranging the

terms, the following is obtained:(
τf − τ0

2

(
∂FN

∂xN

)
wN +

τf − τ0

2

(
∂fN
∂xN

)T

λ̃N + wN

N∑
i=0

DNi
λ̃i

wi
+

(
∂hN

∂xN

)T

µ̃N

)
=
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2DNN λ̃N − ∂E

∂xN
−

(
∂e

∂xN

)T

ν̃ (44)

or

wN

(
∂L

∂xN
(xN ,uN ,

λ̃N

wN
,
µ̃N

wN
) +

N∑
i=0

DNi
λ̃i

wi

)
=

λ̃N

wN
− ∂Ẽe

∂xN
≡ cN .�

Corollary 1. The result for the zeroth node (i.e. initial time condition) can
be shown in a similar fashion:

−w0

(
∂L

∂x0
(x0,u0,

λ̃0

w0
,
µ̃0

w0
) +

N∑
i=0

D0i
λ̃i

wi

)
=

λ̃0

w0
+

∂Ẽe

∂x0
≡ c0

Lemma 5. The Lagrange multipliers λ̃i and ν̃ satisfy the condition,

1
2

N∑
i=0

wiH
(
xi,ui,

λ̃i

wi

)
= −∂Ẽe

∂τN
(45)

1
2

N∑
i=0

wiH
(
xi,ui,

λ̃i

wi

)
=

∂Ẽe

∂τ0
(46)

Proof: Applying the KKT condition for the variable, τN , we have,

− ∂E

∂τN
− ∂e

∂τN

T

ν̃ =

[
N∑

i=0

λ̃
T

i fi
2

+
Fiwi

2

]
=

1
2

N∑
i=0

wi

(
Fi +

λ̃
T

i

wi
fi

)

and hence the first part of the lemma. The second part of the lemma follows
similarly by considering the variable τ0. �

Collecting all these results, and letting

Λ̃NP = [λ̃0; λ̃1; . . . ; λ̃N ; µ̃0; µ̃1; . . . ; µ̃N ; ν̃0; ν̃f ]

the dualization of Problem BN may be cast in terms of Problem BNλ:

Problem BNλ

Find XNP and Λ̃NP that satisfy Eqs.(21)-(23) in addition to the following
nonlinear algebraic relations:

∂L

∂uk
(xk,uk,

λ̃k

wk
,
µ̃k

wk
) = 0 k = 0, . . . , N (47)

µ̃T
k hk = 0, µ̃k ≥ 0 k = 0, . . . , N (48)

∂L

∂xk
(xk,uk,

λ̃k

wk
,
µ̃k

wk
) +

N∑
i=0

Dki

(
λ̃i

wi

)
= 0 k = 1, . . . , N − 1 (49)
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and

∂L

∂xN
(xN ,uN ,

λ̃N

wN
,
µ̃N

wN
) +

N∑
i=0

DNi
λ̃i

wi
=

cN

wN
(50)

λ̃N

wN
− ∂Ẽe

∂xN
= cN (51)

∂L

∂x0
(x0,u0,

λ̃0

w0
,
µ̃0

w0
) +

N∑
i=0

D0i
λ̃i

wi
= − c0

w0
(52)

λ̃0

w0
+

∂Ẽe

∂x0
= c0 (53)

1
2

N∑
i=0

wiH
(
xi,ui,

λ̃i

wi

)
= −∂Ẽe

∂τN
(54)

1
2

N∑
i=0

wiH
(
xi,ui,

λ̃i

wi

)
=

∂Ẽe

∂τ0
(55)

where c0 and cN are arbitrary vectors in R
Nx . The deliberate formulation of

the KKT conditions for Problem BN in the above form facilitates a definition
of Closure Conditions:

Definition 1. Closure Conditions are defined as the set of constraints that
must be added to Problem BNλ so that every solution of this restricted problem
is equivalent to the solution of Problem BλN

From this definition, the Closure Conditions are obtained by simply match-
ing the equations for Problems BNλ to those of Problem BλN . This results
in,

c0 = 0 (56)
cN = 0 (57)

1
2

N∑
i=0

wiH
(
xi,ui,

λ̃i

wi

)
= H0 = HN (58)

The Closure Conditions facilitate our main theorem:

The Covector Mapping Theorem

Theorem 1. There exist Lagrange multipliers λ̃i, µ̃i that are equal to the
pseudospectral approximations of the covectors λN (τi),µN (τi) at the shifted
LGL node τi multiplied by the corresponding LGL weight wi. Further, there
exists a ν̃ that is equal to the constant covector ν. In other words, we can
write,

λN (τi) =
λ̃i

wi
, µN (τi) =

µ̃i

wi
, ν̃ = ν (59)
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3.2 Proof of the Theorem

Since a solution, {xi, ui, λi, µi, ν}, to Problem BλN exists (by assumption),
it follows that {xi, ui, wiλi, wiµi, ν} solves Problem BNλ while automati-
cally satisfying the Closure Conditions. Conversely, a solution, {xi, ui, λ̃i, µ̃i, ν̃},
of Problem BNλ that satisfies the Closure Conditions provides a solution,

{xi, ui,
λ̃i

wi
,

µ̃i

wi
, ν̃}, to Problem BλN . �

Remark 2. A solution of Problem BλN always provides a solution to Problem
BNλ; however, the converse is not true in the absence of the Closure Condi-
tions. Thus, the Closure Conditions guarantee an order-preserving bijective
map between the solutions of Problem BNλ and BλN . The commutative dia-
gram depicted in Fig.1 captures the core ideas.

Problem B

Problem B Problem B N

Problem B N

d
u

a
liz

a
tio

n

d
u

a
liz

a
tio

n

discretization
(direct)

discretization
(indirect)

convergence

convergence

gap

Covector
Mapping
Theorem

Problem B N

Fig. 1. Commutative Diagram for Discretization and Dualization

Remark 3. The Closure Conditions given by c0 = 0 = cN are a simple re-
quirement of the fact that the PS transformed discrete adjoint equations be
satisfied at the end points in addition to meeting the endpoint transversal-
ity conditions. On the other hand, the condition given by Eq.(58) states the
constancy of the discrete Hamiltonian in a weak form (see Lemma 1).

Remark 4. The Closure Conditions signify the closing of the gap between
Problems BNλ and BλN which exist for any given degree of approximation,
N . The issue of convergence of Problem BN to Problem B via Problem BλN

is discussed in Ref.[13].

4 Numerical Example

To illustrate the theory presented in the previous sections, the Breakwell
problem[3] is considered:
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Minimize

J =
1
2

∫ 1

0

u2 dt

subject to the equations of motion

ẋ(τ) = v(τ), v̇(τ) = u(τ)

the boundary conditions

x(0) = 0, x(1) = 0, v(0) = 1.0, v(1) = −1.0

and the state constraint
x(τ) ≤ � = 0.1

Figures 2 and 3 demonstrate the excellent agreement between the analyt-
ical solution[3] and the solution obtained from our Legendre pseudospec-
tral method. The solution was obtained for 50 LGL points with the aid of
DIDO[16], a software package that implements our ideas. The cost function
obtained is 4.4446 which agrees very well with the analytic optimal result of
J = 4

9� = 4.4444. It is apparent that the optimal switching structure is free-
constrained-free. The costates corresponding to the D-form of the Lagrangian
are shown in Figure 4. Note that the method adequately captures the fact
that λv should be continuous while λx should have jump discontinuities given
by,3

λ−
x (τj) − λ+

x (τj) =
2

9�2
j = 1, 2 τ1 = 3�, τ2 = 1 − 3�

Figure 4 exhibits a jump discontinuity of 22.2189 which compares very well
with the analytical value of 22.2222.

5 Conclusions

A Legendre pseudospectral approximation of the constrained Bolza problem
has revealed that there is a loss of information when a dualization is per-
formed after discretization. This information loss can be restored by way of
Closure Conditions introduced in this paper. These conditions also facilitate a
spectrally accurate way of representing the covectors associated with the con-
tinuous problem by way of the Covector Mapping Theorem (CMT). All these
results can be succinctly represented by a commutative diagram. The practi-
cal advantage of the CMT is that nonlinear optimal control problems can be
solved efficiently and accurately without developing the necessary conditions.
On the other hand, the optimality of the solution can be checked by using
the numerical approximations of the covectors obtained from the CMT. Since
these solutions can presently be obtained in a matter of seconds, it appears
that the proposed technique can be used for optimal feedback control in the
context of a nonlinear model predictive framework.
3 Ignoring the typographical errors, the costates given in Ref.[3] correspond to the

P -form[11] and exhibit a jump discontinuity in λv as well.
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Fig. 2. PS states, x and v. Solid line is analytical.
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Fig. 3. PS control, u. Solid line is analytical.
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Fig. 4. Costates, λx and λv from CMT. Solid line is analytical.
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